K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

TÌM GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦA CÁC BIỂU THỨC SAU ( NẾU CÓ) :
A=X+1X+1
B=3(X1)+73(X−1)+7
C=4X234X−2−3
D=2017x+1−2017x+1
E=x+1x+2x+1x+2
F=x+2x5x+2x−5
G=1x24x+5

1 tháng 10 2018
F=x+2x5x+2x−5 = (x2x+1)6=(x1)26(x−2x+1)−6=(x−1)2−6
=> Min F=-6 khi x=1
G=1x24x+51x2−4x+5 
Dự đoán là Min G=1 khi x=2 (cách làm k chắc là đúng nên k ghi vào )  
23 tháng 9 2017

 Lê Vĩnh Kỳ bn tham khảo nhé:

\(ĐK:2\le x\le4\)

\(A^2\)

\(=x-2+4-x+2\sqrt{"x-2""4-x"}\)

\(=2+2\sqrt{"x-2""4-x"}\)

\(\Leftarrow2+"x-2"+"4-x"\)BĐT Cauchy

\(\Leftarrow2+2=4\)

\(\Leftrightarrow A\le2\)

Dấu \("="\)xảy ra \(\Leftrightarrow x-2=4-x\Leftrightarrow x=3\)

Vậy GTLN của A là 2 tại \(x=3\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Bạn cần gõ đề bằng công thức toán để được hỗ trợ tốt hơn.

AH
Akai Haruma
Giáo viên
24 tháng 6

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$P\geq (x^2+y^2)^2=\frac{1}{4}[(x^2+y^2)(1+1)]^2\geq \frac{1}{4}[(x+y)^2]^2=\frac{1}{4}(x+y)^4=\frac{1}{4}(\sqrt{10})^4=25$

Vậy $P_{\min}=25$. Giá trị này đạt tại $x=y=\frac{\sqrt{10}}{2}$

1 tháng 10 2015

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

30 tháng 9 2015

hok giỏi nhưng cx có bài bế tắc chứ bộ đâu fai hok giỏi nhất thiết là cái gì cx biết đâu

1 tháng 10 2015

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)