K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để \(\frac{x^2+7}{x+1}\)nhận giá trị nguyên thì \(x^2+7⋮x+1\left(1\right)\)

+)Ta có:\(x+1⋮x+1\)

\(\Rightarrow x.\left(x+1\right)⋮x+1\)

\(\Rightarrow x^2+x⋮x+1\left(2\right)\)

+)Từ (1) và (2)

\(\Rightarrow\left(x^2+x\right)-\left(x^2+7\right)⋮x+1\)

\(\Rightarrow x^2+x-x^2-7⋮x+1\)

\(\Rightarrow x-7⋮x+1\left(3\right)\)

+)Ta lại có:\(x+1⋮x+1\left(4\right)\)

+)Từ (3) và (4)

\(\Rightarrow\left(x+1\right)-\left(x-7\right)⋮x+1\)

\(\Rightarrow x+1-x+7⋮x+1\)

\(\Rightarrow8⋮x+1\)

\(\Rightarrow x+1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Rightarrow x\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\in Z\)

Vậy \(x\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)

Chúc bn học tốt

19 tháng 5 2021

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

19 tháng 5 2021

Mình làm sai câu a...

Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên

Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)

Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).

29 tháng 12 2016

a) x khác 2

b) với x<2

c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)

x-2=(-7,-1,1,7)

x=(-5,1,3,9)

29 tháng 12 2016

a) đk kiện xác định là mẫu khác 0

=> x-2 khác o=> x khác 2

b)

tử số luôn dương mọi x

vậy để A âm thì mẫu số phải (-)

=> x-2<0=> x<2 

c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu

cụ thể

x^2-2x+2x-4+4+3

ghép

x(x-2)+2(x-2)+7 

như vậy chỉ còn mỗi số 7 không chia hết cho x-2

vậy x-2 là ước của 7=(+-1,+-7) ok

13 tháng 11 2023

help

 

13 tháng 11 2023

1 - 2x = -(2x - 1) 

= -(2x + 6 - 7)

= -(2x + 6) + 7

= -2(x + 3) + 7

Để B nguyên thì (1 - 2x) ⋮ (x + 3)

⇒ 7 ⋮ (x + 3)

⇒ x + 3 ∈ Ư(7) = {-7; -1; 1; 7}

⇒ x ∈ {-10; -4; -2; 4}

1 tháng 2 2022

Ta có: \(A=\dfrac{\sqrt{x}-4}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}=1-\dfrac{7}{\sqrt{x}+3}\) (ĐKXĐ: \(x\ge0\))

Để \(A\in Z\) thì \(\sqrt{x}+3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x=16\) (TMĐK)

Vậy \(x=16\) thì \(A\in Z\)

1 tháng 2 2022

\(A=\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\)

\(A=1-\dfrac{7}{\sqrt{x}+3}\)

Để A nguyên thì \(\sqrt{x}+3\) phải là ước của 7 . 

\(\sqrt{x}+3=1;-1;7;-7\)

\(\Rightarrow16\)

24 tháng 10 2016

x-3=k^2

x=k^2+3

x+1-k=t^2

k^2+4-k=t^2

(2k-1)^2+15=4t^2

(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5

---giải phương trình nghiệm nguyên với k,t---

TH1. [2(k-t)-1][2(k+t)-1]=-1.15

2(k-t)-1=-1=> k=t

4t-1=15=>t=4    nghiệm (-4) loại luôn

với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận

TH2. mà có bắt tìm hết đâu

x=19 ok rồi

24 tháng 10 2016

ô hay vừa giải xong mà

x=k^2+3

với k là nghiệm nguyên của phương trình

k^2-k+4=t^2

bắt tìm hết hạy chỉ một

x=19 là một nghiệm 

27 tháng 1 2017

\(M=\frac{8x+1}{4x-1}=\frac{8x-2+3}{4x-1}=\frac{2\left(4x-1\right)+3}{4x-1}=2+\frac{3}{4x-1}\)

Để \(2+\frac{3}{4x-1}\) là số nguyên <=> \(\frac{3}{4x-1}\) là số nguyên

=> 4x - 1 ∈ Ư(3) = { - 3; - 1; 1 ; 3 }

4x - 1- 3- 1   1     3    
x- 1/2 01/2

Mà x nguyên => x = { 0; 1 }

27 tháng 1 2017

cảm ơn nhìu nha