Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
a) Sửa đề: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=101x\)
Ta có: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|\ge0\Leftrightarrow101x\ge0\Leftrightarrow x\ge0\)
Khi \(x\ge0\)thì: \(pt\Leftrightarrow x-1+x-2+x-3+...+x-100=101x\)
\(\Rightarrow100x-\left(1+2+3+...+100\right)=101x\)
\(\Rightarrow-x=1+2+3+...+100=5050\Leftrightarrow x=-5050\)
b) \(A=3x-x^2-4\)
\(A=3x-x^2-\frac{9}{4}-\frac{7}{4}\)
\(A=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}\)
\(A=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)
Dấu "=" khi: \(x=\frac{3}{2}\)
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
Tìm giá trị nhỏ nhất biết:
A=x^2+3./y-2/-1
làm nhanh hộ mk, mk cần gấp
làm nhanh + đúng mk sẽ tick cho
Ta có: \(x^2\ge0;3\left|y-2\right|\ge0\)
\(\Rightarrow x^2+3\left|y-2\right|\ge0\)
\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)
Vậy GTNN của A = -1 khi x = 0 và y = 2
\(A=x^2+3\left|y-2\right|-1\)
Có \(x^2\ge0;3\left|y-2\right|\ge0\)
\(\Rightarrow A\ge0+0-1=-1\)
Dấu '=" xảy ra khi MinA=-1\(\Leftrightarrow x=0;y=2\)
đặt A = |x + 1| + |x + 3|
ta có A = |x + 1| + |x + 3| = |x + 1| + |-x - 3| > |x + 1 -x - 3| = 2
=> Amin = 2 <=> (x+1)(-x-3) > 0
vậy Amin= 2 <=> -3< x <-1
Gọi \(A=3.\left|x+\frac{-2}{5}\right|+\frac{5}{2}\)
Ta có : \(\left|x+\frac{-2}{3}\right|\ge0\)
\(3.\left|x+\frac{-2}{3}\right|\ge0\)
\(3.\left|x+\frac{-2}{3}\right|+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow Min_A=\frac{5}{2}\)
\(\Leftrightarrow3.\left|x+\frac{-2}{3}\right|=0\)
\(\Leftrightarrow\left|x+\frac{-2}{5}\right|=0\)
\(\Leftrightarrow x+\frac{-2}{5}=0\)
\(\Leftrightarrow x=\frac{2}{5}\)
`Answer:`
1.
Do \(\left|x-\frac{2}{5}\right|\ge0\forall x\)
\(\Rightarrow3.\left|x-\frac{2}{5}\right|\ge0\forall x\)
\(\Rightarrow3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\ge\frac{5}{2}\forall x\)
Dấu "=" xảy ra khi \(\left|x-\frac{2}{5}\right|=0\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)
Vậy \(3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\) đạt giá trị nhỏ nhất \(=\frac{5}{2}\Leftrightarrow x=\frac{2}{5}\)
2.
Do \(\left|x-\frac{1}{2}\right|\ge0\forall x\)
\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow A\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy giá trị nhỏ nhất của \(A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
mình ko biết