K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

\(B=\left|2x-1\right|+\left|2x-2\right|+\left|3-2x\right|+\left|4-2x\right|\ge\left|2x-1+2x-2+3-2x+4-2x\right|=4\)Vậy minB=4 với \(1\le x\le\frac{3}{2}\)

27 tháng 7 2016

bài 1:

a. \((x+1)(x+3) - x(x+2)=7 \)

    \(x^2+ 3x +x +3 - x^2 -2x =7\)

    \(x^2+4x+3-x^2-2x=7\)

\(=> 2x+3=7\)

    \(2x=4\)

    \(x = 2\)

Bài 2:

a)

\((3x-5)(2x+11) -(2x+3)(3x+7) \)

\(= 6x^2 +33x-10x-55-6x^2-14x-9x-10\)

\(= (6x^2-6x^2)+(33x-10x-14x-9x)-(55+10)\)

\(=-65\)

 

\(\)

 

 

27 tháng 7 2016

Hỏi đáp Toán

11 tháng 11 2016

\(A=x^2+2y^2+2xy+2x-4y+2016\)

\(=\left(x^2+2xy+2x+y^2+2y+1\right)+\left(y^2-6y+9\right)+2006\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge2006\)

\(\Rightarrow A\ge2006\)

Dấu = khi \(\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x+y+1=0\\y-3=0\end{cases}\)

\(\Rightarrow\begin{cases}x+y+1=0\\y=3\end{cases}\)\(\Rightarrow\begin{cases}x+3+1=0\\y=3\end{cases}\)\(\Rightarrow\begin{cases}x=-4\\y=3\end{cases}\)

Vậy MinA=2006 khi \(\begin{cases}x=-4\\y=3\end{cases}\)

 

12 tháng 8 2018

Violympic toán 8

a: \(=2\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}>=-\dfrac{9}{2}\)

Dấu '=' xảy ra khi x=3/2

b: \(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)

Dấu '=' xảy ra khi x=1/2

12 tháng 8 2018

Hỏi đáp Toán

12 tháng 8 2018

Phép nhân và phép chia các đa thức

3 tháng 8 2019

\(H=x^2+2xy+y^2+2x+2y+x^2+4x+2019=\left(x+y\right)^2+2\left(x+y\right)+\left(x+2\right)^2+2015\)

\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2014\ge2014\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2;y=1\)

\(I=\left(1-x\right)^2+\left(-2-y\right)^2+\left(x+y\right)^2\ge\frac{\left(1-x-2-y+x+y\right)^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(1-x=-2-y=x+y\)\(\Leftrightarrow\)\(x=\frac{4}{3};y=\frac{-5}{3}\)