Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{x+2}{x}=1+\frac{2}{x}\)
ta có: Với \(x\in Z\)thì \(\frac{2}{x}\le2\Leftrightarrow A\le3\)
Dấu "=" xảy ra khi x=1
Vậy GTLN của A là 3 khi x=1
a = 1 + 2/x
=> để a Max thì 2/x Max
+, Với x < 0 => 2/x < 0
+, Với x > 0 => 2/x >0
=> để 2/x Max thì x > 0
x > 0 => x >= 1
=> 2/x < = 1
Dấu "=" xảy ra <=> x=1
Vậy Max a = 1 + 2 = 3 <=> x=1
Tk mk nha
Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)
Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất
TH1: |2x-2|=0 Suy ra 2x=2=>x=1
A= 0+|2.2-2013|=2009
TH2:|2x-2013|=0=>2x=2013=>x=1006,5
A=|2x-2|+|2x-2013|=|2.1006,5-2|=2011
Vì 2011>2009 suy ra MinA =2009
Áp dụng BĐT trị tuyệt đối ta có:
\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)
\(\Rightarrow A_{min}=2011\)
Dấu "=" xảy ra khi \(\left(2x-2\right)\left(2013-2x\right)\ge0\Rightarrow1\le x\le1006\)
Ta có \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\)
Ta thấy \(A=\left|2x-2\right|+\left|2013-x\right|\ge\left|2x-2+2013-2x\right|=2011\) ra
Dấu " = " xảy ra khi và chỉ khi \(\left(2x-2\right).\left(2013-2x\right)\ge0\)
\(\Leftrightarrow\frac{2013}{2}\ge x\ge1\)
Vậy .....
A=|2x-2|+|2x-2013|=|2x-2|+|2013-x|
Áp dụng BĐT:|a|+|b|>=|a+b|
Ta có:|2x-2|+|2013-x|>=|2x-2+2013-2x|=2011
Dấu "=" xảy ra<=>(2x-2)(2013-2x)>=0<=>1<=x<=2013/2
a) -Thay \(x=a\) vào K ta được:
\(K=\dfrac{16}{\left(a^2+2\right)+4}\)
-Thay \(x=-a\) vào K ta được:
\(K=\dfrac{16}{\left(\left(-a\right)^2+2\right)+4}=\dfrac{16}{\left(a^2+2\right)+4}\)
-Vậy tại x=a và x=-a (a∈R) thì 2 giá trị của K bằng nhau.
b) -Không có GTNN, chỉ có GTLN:
\(K=\dfrac{16}{\left(x^2+2\right)^2+4}\le\dfrac{16}{2^2+4}=2\)
\(K_{max}=2\Leftrightarrow x=0\)
Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|\)
\(=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right).\left(2013-2x\right)\ge0\)
\(\Leftrightarrow\left(2x-2\right).\left(2x-2013\right)\le0\)
\(\Rightarrow\hept{\begin{cases}2x-2\ge0\\2x-2013\le0\end{cases}\Rightarrow\hept{\begin{cases}2x\ge2\\2x\le2013\end{cases}}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2013}{2}\end{cases}}\)
\(\Rightarrow Min\left(A\right)=2011\Leftrightarrow1\le x\le\frac{2013}{2}\)