K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2018

\(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2\)

\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

15 tháng 2 2018

giải tiếp : 

Vì \(x^2+x+1=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

                            \(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên  \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu "=" xảy ra khi và chỉ khi  \(x=-\frac{1}{2}\)

10 tháng 3 2022

A= 3x2 - 2x + 3

= 3(x2- 2/3x + 1/9 ) + 8/3

= 3(x-1/3)2 + 8/3 > 8/3 \(\forall\)x

dấu ''='' xảy ra <=> x = 1/3

/HT\

10 tháng 3 2022

Nhầm đề rồi mấy bạn trả lời

Bảo là giá trị nguyên của ,\(\frac{2x-3}{3x+2}\) , các bạn ghi là \(3x^2-2x+3\)rồi

HT

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

4 tháng 3 2022

\(E=\left(2x-5\right)^{10}-12\ge-12\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)

\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5\)

Vậy \(F_{min}=22\Leftrightarrow x=-5\)

\(G=17-\left|3x-2\right|\)

Dấu "=" xảy ra \(x=\dfrac{2}{3}\)

Vậy ​\(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)

\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)

Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)

10 tháng 7 2017

Ta có : \(\left|2x-5\right|+\left|7-2x\right|\ge\left|2x-5+7-2x\right|\forall x\)

\(\Leftrightarrow\left|2x-5\right|+\left|7-2x\right|\ge2\forall x\)

\(\Rightarrow A_{min}=2\)