K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

vì /2014-x/ lớn hơn hoặc bằng 0 tương tự với các số còn lại 

để A có giá trị nhỏ nhất thì các số này nhỏ nhất mà nhỏ nhất thì x lớn nhất 

vậy x=2014 

=> A= 0+1+2=3

8 tháng 6 2016

 | 2014 - x | + | 2015 - x | + | 2016 - x |> | 2014 - x + 2015 - x + 2016 - x |

| 2014 - x + 2015 - x + 2016 - x | = | 2014 + 2015 + 2016 - x - x - x |

                                                = | 6045 - 3x |

đề A có giá trị nhỏ nhất thì | 6045 - 3x | phải có giá trị nhỏ nhất 

suy ra  6045 = 3x

           6045 : 3 =x 

                2015 = x

thay x vào A

 A = | 2014 - 2015 | + | 2015 - 2015 | + | 2016 - 2015 |

A = 1 + 0 + 1

A = 2 

vậy min A = 2 

khi x = 2015 

3 tháng 1 2018

Đặt A = |2014-x|+|2015-x|+|2016-x| = |x-2014|+|2015-x|+|2016-x|

Ta có: \(\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)

MÀ \(\left|2015-x\right|\ge0\)

\(\Rightarrow A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge2+0=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(2014-x\right)\left(x-2016\right)\ge0\\\left|2015-x\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2014\le x\le2016\\x=2015\end{cases}\Rightarrow}x=2015}\)

Vậy GTNN của A = 2 khi x=2015

19 tháng 6 2019

khi x = 2015

11 tháng 3 2017

A=6 nhé

X=2016

11 tháng 3 2017

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|=\left|x-2014\right|+\left(\left|x-2013\right|+\left|2015-x\right|\right)\)

\(\Leftrightarrow A\ge\left|x-2014\right|+\left|x-2013+2015-x\right|=\left|x-2014\right|+2\ge2\)

Dấu "=" xảy ra <=> \(\left(x-2013\right)\left(2015-x\right)\ge0\) và \(\left|x-2014\right|=0\)

\(\Leftrightarrow2013\le x\le2015\) và \(x=2014\) (thỏa mãn)

Vậy \(A_{min}=2\) tại \(x=2014\)

1 tháng 9 2016

GTNN | x - 2015| = 0 

=> x = 2015 

=> | 2015 - 2016 | = 1 

=> min A = 0 + 1 = 1 

GTNN | x - 2016 |= 0 

=> x = 2016

=> | 2016 - 2015 | = 1

=> min A = 1 + 0 = 0 

Vậy GTNN của A = 1 

tíc mình nha !

1 tháng 9 2016

\(A=\left|x-2015\right|+\left|x-2016\right|\)

Có: \(\left|x-2015\right|\ge0;\left|x-2016\right|\ge0\)

\(\left|x-2015\right|+\left|x-2016\right|\ge0\)

Trường hợp này dấu = không thể xảy ra, nên:

\(\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}\)

Thay: \(x=2015\) thì \(A=\left|2015-2015\right|+\left|2015-2016\right|=1\) 

Thay: \(x=2016\) thì \(A=\left|2016-2015\right|+\left|2016-2016\right|=1\)

Ta thấy: \(x=2015\) và \(x=2016\) đều nhận giá trị là 1.

Vậy: \(Min_A=1\) tại \(x=2015\) hoặc \(x=2016\)

AH
Akai Haruma
Giáo viên
25 tháng 1

Lời giải:

Áp dụng BĐT $|a|+|b|\geq |a+b|$ (để cm BĐT này bạn có thể tìm trên mạng, rất nhiều)

$|x-2015|+|x-2017|=|x-2015|+|2017-x|\geq |x-2015+2017-x|=2$
$|x-2016|\geq 0$ theo tính chất trị tuyệt đối

$\Rightarrow P\geq 2+0=2$

Vậy $P_{\min}=2$. Giá trị này đạt được tại $(x-2015)(2017-x)\geq 0$ và $x-2016=0$

Hay $x=2016$

25 tháng 11 2016

Ta có: A = |x-2013|+|x-2014|+|x-2015|

Vì \(\left|x-2013\right|\ge0;\left|x-2014\right|\ge0;\left|x-2015\right|\ge0\)

\(\Rightarrow\hept{\begin{cases}x-2013=0\\x-2014=0\\x-2015=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=2014\\x=2015\end{cases}}}\)

Vậy x không có giá trị vì x không thể cùng lúc có tới 3 giá trị khác nhau

\(\Rightarrow x\in\theta\)

25 tháng 11 2016

A =2 khi x=2013;2014;2015