K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

bài dễ ợt mà làm ko đc

4 tháng 1 2017

Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)

=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)

Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)

Ta xét các trường hợp: 

TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)

TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)

TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)

Vậy (x;y;z) là các hoán vị của (1;2;3)

4 tháng 3 2018

a) Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)

b) Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\) ta có: \(x+y+z\le x+x+x=3x\Leftrightarrow xyz\le3x\Leftrightarrow yz\le3\)

Vì \(x;y;z\) là số nguyên dương nên: \(yz\in\left\{1;2;3\right\}\)

Với \(yz=1\Leftrightarrow y=z=1\Leftrightarrow x+2=x\left(l\right)\)

Với \(yz=2\Leftrightarrow y=2;z=1\left(y\ge z\right)\Leftrightarrow x=3\)

Với \(yz=3\Leftrightarrow y=3;z=1\left(y\ge z\right)\Leftrightarrow x=2\)

Vậy: \(x;y;z\) là hoán vị của 1;2;3 hay:

\(\left(x;y;z\right)=\left\{3;2;1\right\};\left(3;1;2\right);\left(2;1;3\right);\left(2;3;1\right);\left(1;2;3\right);\left(1;3;2\right)\)

16 tháng 4 2015

A=I 2x+2 I + I 2x-2013I =I2x+2I +I2013- 2 xI >= I2x+2+2013- 2x I=2015

Vậy min A=2015

Phần còn lại bạn tự làm 

Chúc bạn học tốt

1 tháng 3 2017

A = |2x-x| + |2x-2013|

Ta có:

\(\left|2x-x\right|\ge0\forall x\)

\(\Rightarrow\)GTNN của |2x-x|=0

\(\left|2x-2013\right|\ge0\forall x\)

\(\Rightarrow\)GTNN của |2x-2013|=0

Dấu "=" xảy ra khi:

\(\left\{\begin{matrix}2x-x=0\Rightarrow x=0\left(1\right)\\2x-2013=0\Rightarrow2x=2013\Rightarrow x=\dfrac{2013}{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)x=0\)

\(A=\left|2.0-0\right|+\left|2.0-2013\right|\\ A=0+\left|-2013\right|\\ A=0+2013\\ A=2013\)

\(\left(2\right)x=\dfrac{2013}{2}\)

\(A=\left|2.\dfrac{2013}{2}-\dfrac{2013}{2}\right|+\left|2.\dfrac{2013}{2}-2013\right|\\ A=\left|2013-\dfrac{2013}{2}\right|+\left|2013-2013\right|\\ A=\left|2013\right|+\left|0\right|\\ A=2013\)

Vậy \(Min_A=2013\) tại \(x=0\) hoặc \(x=\dfrac{2013}{2}\)

28 tháng 2 2017

A nhỏ nhât bằng 1007 với x= -1008

20 tháng 5 2021

Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)

Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất

TH1: |2x-2|=0 Suy ra 2x=2=>x=1

A= 0+|2.2-2013|=2009

TH2:|2x-2013|=0=>2x=2013=>x=1006,5

A=|2x-2|+|2x-2013|=|2.1006,5-2|=2011

Vì 2011>2009 suy ra MinA =2009

 

20 tháng 5 2021

sai rồi

 

NV
17 tháng 1

Áp dụng BĐT trị tuyệt đối ta có:

\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

\(\Rightarrow A_{min}=2011\)

Dấu "=" xảy ra khi \(\left(2x-2\right)\left(2013-2x\right)\ge0\Rightarrow1\le x\le1006\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:
Ta thấy, với mọi $x,y,z$ thì:
$(x-5)^2\geq 0$

$|2x-y|\geq 0$

$|x-2y+z|\geq 0$

$\Rightarrow A\geq 0+0+0-1=-1$

Vậy $A_{\min}=-1$.

Giá trị này đạt được khi $x-5=2x-y=x-2y+z=0$

$\Leftrightarrow x=5; y=10; z=15$