Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,M=x^2+4x+5\)
\(M=x^2+2.x.2+2^2+1\)
\(M=\left(x+2\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -2
Vậy Min M = 1 <=> x = -2
b, Đặt \(A=9x^2-6x+6\)
\(A=\left(3x\right)^2-2.3x+1+5\)
\(A=\left(3x-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x = 1/3
Vậy Min A = 5 <=> x = 1/3
a) M = x2 + 4x + 5
= x2 + 4x + 4 + 1
= ( x + 2 )2 + 1
Nhận xét :
( x + 2 )2 > 0 với mọi x
=> ( x + 2 )2 + 1 > 1
=> M > 1
Dấu " = " xảy ra khi : ( x + 2 )2 = 0
=> x + 2 = 0
=> x = - 2
Vậy giá trị nhỏ nhất của M = 1 khi x = - 2
b) N = 9x2 - 6x + 6
= 9x2 - 6x + 1 + 5
= ( 3x + 1 )2 + 5
Nhận xét :
( 3x + 1 )2 > 0 với mọi x
=> ( 3x + 1 )2 + 5 > 5
=> N > 5
Dấu " = " xảy ra khi : ( 3x + 1 )2 = 0
=> 3x + 1 = 0
=> x = \(-\frac{1}{3}\)
Vậy giá trị nhỏ nhất của N = 5 khi x = \(-\frac{1}{3}\)
\(A=\left(9x^2-6x+1\right)+\left(x+\frac{1}{9x}\right)+9\)
\(=\left(3x-1\right)^2+\left(x+\frac{1}{9x}\right)+9\)
\(\ge0+2\sqrt{x.\frac{1}{9x}}+9\)
\(=0+\frac{2}{3}+9=\frac{29}{3}\)
Ta có : \(C=\frac{2}{6x-5-9x^2}\)
\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)
\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)
Để C đạt giá trị nhỏ nhất
\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất
Ta có : \(\left(3x-1\right)^2+4\ge4\)
Dấu " = " xảy ra :
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)
Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
Ta có: \(A=9x^2+\frac{6}{5}x+9\Leftrightarrow A=3x.3x+\frac{3}{5}x+\frac{3}{5}x+\frac{9}{225}+\frac{2016}{225}\)
\(\Leftrightarrow A=3x.3x+3x.\frac{3}{15}+\frac{3}{15}.3x+\frac{3}{15}.\frac{3}{15}+\frac{2016}{225}\)
\(\Leftrightarrow A=3x\left(3x+\frac{3}{15}\right)+\frac{3}{15}\left(3x+\frac{3}{15}\right)+\frac{2016}{225}=\left(3x+\frac{3}{15}\right)\left(3x+\frac{3}{15}\right)+\frac{2016}{225}=\left(3x+\frac{3}{15}\right)^2+\frac{2016}{225}\)
Do \(\left(3x+\frac{3}{15}\right)^2\ge0\Rightarrow\left(3x+\frac{3}{15}\right)^2+\frac{2016}{225}\ge\frac{2016}{225}\Leftrightarrow A\ge\frac{2016}{225}\)
Dấu "=" xảy ra khi: \(\left(3x+\frac{3}{15}\right)^2=0\Leftrightarrow3x+\frac{3}{15}=0\Leftrightarrow3x=-\frac{3}{15}\Leftrightarrow x=-\frac{1}{15}\)
Vậy GTNN của biểu thức \(A\)là \(\frac{2016}{225}\)tại \(x=-\frac{1}{15}.\)
\(Â=9\left(x^2+\frac{2}{15}x\right)+9=9\left(x^2+2xxx\frac{1}{15}+\frac{1}{15^2}\right)+9-9x\frac{1}{15^2}\\ =9\left(x+\frac{1}{15}\right)^2+\frac{224}{25}\)
A >= 224/25
Dấu bằng xảy ra khi và chỉ khi x = -1/5