Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có |x-2006| \(\ge\) 0 với mọi x
(x-y+1)^2 \(\ge\)0 với mọi x;y
=>|x-2006|+(x-y+1)^2+2008 \(\ge\) 2008 với mọi x;y
Dấu "=" sảy ra khi x-2006=0 => x=2006
x-y+1=0 =>2006-y+1=0 => 2006-y=-1 => y=2006+1=2007
Vậy Min M=2008 tại x=2006 và y=2007
\(A=2006-\frac{x}{6-x}\le2006\)
Min \(A=2006\Leftrightarrow\frac{x}{6-x}=0\Rightarrow x=0\)
\(B=\left|x-2001\right|+\left|x+1\right|\ge0\)
Min \(B=0\Leftrightarrow\hept{\begin{cases}x-2001=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2001\\x=-1\end{cases}}}\)
a)|x- 2006| -|2007- x|
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2006\right|-\left|2007-x\right|\ge\left|x-2006-2007-x\right|=4013\)
Dấu = khi \(\left(x-2006\right)\left(2007-x\right)\ge0\)
\(\Rightarrow2006\le x\le2007\)
\(\Rightarrow\begin{cases}2006\le x\le2007\\\left(x-2006\right)\left(2007-x\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=2006\\x=2007\end{cases}\)
Vậy MinB=4013 khi x=2006 hoặc x=2007
b)Ta có:\(\begin{cases}y^2\\\left|x-16\right|\end{cases}\ge0\)
\(\Rightarrow y^2+\left|x-16\right|-9\ge0-9=-9\)
\(\Rightarrow C\ge-9\)
Dấu = khi \(\begin{cases}y^2=0\\\left|x-16\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=0\end{cases}\)
Vậy MinC=-9 khi x=16 và y=0
Ta có:
\(\left(x-\frac{1}{2}\right)^2\ge0;\left|3x+2y\right|\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|+2006\ge2006\)
Dấu "=" xảy ra tại \(\hept{\begin{cases}x-\frac{1}{2}=0\\3x=-2y\end{cases}}\Rightarrow x=\frac{1}{2};y=-\frac{3}{4}\)
Vậy \(A_{min}=2006\Leftrightarrow x=\frac{1}{2};y=-\frac{3}{4}\)
a. B=|x- 2006| -|2007- x|
Vì |x- 2006|\(\ge\)0
|2007- x|\(\ge\)0
Suy ra:|x- 2006| -|2007- x|\(\ge\)0
Dấu = xảy ra khi x-2006=0;x=2006
2007-x=0;x=2007
Vậy Min B=0 khi x=2006;x=2007
b) C= y2 +|x-16|-9
Vì y2\(\ge\)0
|x-16|\(\ge\)0
Suy ra: y2 +|x-16|-9\(\ge\)-9
Dấu = xảy ra khi x-16=0;x=16
y2=0;y=0
Vậy Max C=-9 khi x=16;y=0
\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)
Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN
Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5
Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5
x=5;A=2001
tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu
\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)
=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6
A lớn nhất khi 6-x nên => 6-x=1
=> x=5
giá trị lớn nhất của A khi đó là:
A=(2006-5)/(6-5)=2001
a) \(M=2022-\left|x-9\right|\le2022\)
\(maxM=2022\Leftrightarrow x=9\)
b) \(N=\left|x-2021\right|+2022\ge2022\)
\(minN=2022\Leftrightarrow x=2021\)