Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có D = |x^2 +x+3 | + |x^2 +x-6| = |x^2 +x+3 | + |-x^2 - x + 6 |
Ta co: D = |x^2 +x+3| +|-x^2 -x + 6 | \(\ge\)| x^2 + x + 3 - x^2 - x + 6 |
D \(\ge\)|9 | = 9
D nhỏ nhất chỉ khi D=9
Vậy 9 là giá trị nhỏ nhất của biểu thức D = | x^2 +x+3| + | x^2 + x - 6 |
\(\left|x^2+x+3\right|+\left|x^2+x-6\right|\)
\(=\left|x^2+x+3-x^2-x+6\right|\)
\(\ge9\)
/x-3/>=0\(\Rightarrow\)-/x-3/<=0 maxP=12 khi x-3=0 \(\Rightarrow\)x=3
\(P=-\left|x-3\right|+12\)
Vì \(-\left|x-3\right|\le0\Leftrightarrow-\left|x-3\right|+12\le12\)
Vậy GTLN của P là 12 tại \(-\left|x-3\right|=0\Leftrightarrow x=0\)
\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
|4x - 3| lớn hơn hoặc bằng 0
|5y + 7,5| lớn hơn hoặc bằng 0
|4x - 3| + |5y + 7,5| +17,5 lớn hơn hoặc bằng 17,5
Vậy Max A = 17,5 khi x = \(\frac{3}{4}\) và y = \(-1,5\)
\(A=\frac{x^2-2x+2007}{2007x^2},\left(x\ne0\right)\)
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}=\) \(\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
\(A_{min}=\frac{2006}{2007}\) khi \(x-2007=0\) hay \(x=2007\)
Chúc bạn học tốt !!!
Mik làm tóm tắt:
ta có P=|x-2006|+|2007-x|+2006>=x-2006+2007-x+2006=2007
vậy min P=2007 khi:
x-2006>=0 và 2007-x>=0
=> 2006<=x<=2007