Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
nhìu dữ
a)3/2
b)-1/3
c)-5/6
d)0
e)-1/2
Bài 2
a=3
b=1/2
c=-1/3
d=0
e=9
f=-2/3
1) \(A=x^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=0\)
2) \(B=2x^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\)
\(ĐTXR\Leftrightarrow x=0\)
3) \(\left(2x-3\right)^2-5\ge-5\)
\(ĐTXR\Leftrightarrow x=\dfrac{3}{2}\)
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
a)Ta có: \(x^2\ge0\Rightarrow x^2+3\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy \(A_{Min}=3 khi x=0\)
b) \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2-5\ge-5\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(B_{Min}=-5khix=-\dfrac{1}{2}\)
c) \(\left(2x-1\right)^{2008}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
\(\left(3y-2\right)^{2008}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{2}{3}\)
\(\Rightarrow\left(2x-1\right)^{2008}+\left(3y-2\right)^{2008}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(C_{Min}=0khix=\dfrac{1}{2}vày=\dfrac{2}{3}\)