Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow C=-\left(x^2-2x\cdot\frac{5}{2}+\frac{25}{4}\right)+\frac{25}{4}\)
\(\Leftrightarrow C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dẫu ''='' xảy ra <-->x=5/2
\(B=\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)
\(=\left(x^2+5x+5\right)\left(x^2+5x+7\right)\)
Đặt \(x^2+5x+6=t\) nên \(B=\left(t-1\right)\left(t+1\right)=t^2-1\ge-1\forall t\) có GTNN là - 1
Dấu "=" xảy ra \(\Leftrightarrow x^2+5x+6=0\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
Vậy \(B_{min}=-1\) tại \(\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
\(B=\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)
\(=\left(x^2+5x+5\right)\left(x^2+5x+7\right)\)
\(=\left(x^2+5x+5\right)^2+2\left(x^2+5x+5\right)+1-1\)
\(=\left(x^2+5x+6\right)^2-1\ge-1\)
Vậy GTNN là - 1
Dấu = xảy ra khi \(x^2+5x+6=0\)
\(\Leftrightarrow\left(x^2+3x\right)+\left(2x+6\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
A = x2 + 5x
= x2 + 2.\(\frac{5}{2}\)x + \(\frac{25}{4}\) - \(\frac{25}{4}\)
= (x + \(\frac{5}{2}\))2 - \(\frac{25}{4}\)
Vi (x + \(\frac{5}{2}\))2 >= 0
(x + \(\frac{5}{2}\))2 _\(\frac{25}{4}\)>= \(\frac{-25}{4}\)
Dau "=" xay ra <=> x + \(\frac{5}{2}\)= 0
<=> x = \(\frac{-5}{2}\)
Vay GTNN cua A la \(\frac{-25}{4}\)khi x = \(\frac{-5}{2}\)
\(P\left(x\right)=5x^2+x+2=5\left(x^2+\dfrac{1}{5}x\right)+2\\ =5\left(x^2+2.x.\dfrac{1}{10}+\left(\dfrac{1}{10}\right)^2\right)-5.\left(\dfrac{1}{10}\right)^2+2\\ =5\left(x+\dfrac{1}{10}\right)^2+\dfrac{39}{20}\)
Nhận xét: \(\left(x+\dfrac{1}{10}\right)^2\ge0\forall x\inℝ\\ \Rightarrow5\left(x+\dfrac{1}{10}\right)^2\ge0\\ \Rightarrow P\left(x\right)=5\left(x+\dfrac{1}{10}\right)^2+\dfrac{39}{20}\ge\dfrac{39}{20}\)
\(Min_{P\left(x\right)}=\dfrac{39}{20}\) tại \(\left(x+\dfrac{1}{10}\right)^2=0\Leftrightarrow x+\dfrac{1}{10}=0\Leftrightarrow x=-\dfrac{1}{10}\)