K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

ta thấy:  (x-1)^2 >hoặc =0

             (y+3)^2 >hoặc = 0

suy ra (x-1)^2+ (y+3)^2 > hoac = 0

suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5

Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5

Vậy M đạt giá trị nhỏ nhất =5

18 tháng 5 2016

GTNN là 4

18 tháng 5 2016

x-y=2

=>x=y+2

Thay x=y+2 vào Q,ta đc:

\(Q=\left(y+2\right).y+4=y^2+2y+4=y^2+2y+1+3\)

\(Q=y^2+y+y+1+3=y\left(y+1\right)+\left(y+1\right)+3=\left(y+1\right)\left(y+1\right)+3=\left(y+1\right)^2+3\)

\(\left(y+1\right)^2\ge0\Rightarrow\left(y+1\right)^2+3\ge3\)

=>GTNN của Q là 3

Dấu "=" xảy ra <=> y+1=0<=>y=-1

Vậy.............

3 tháng 9 2016

Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0

=> (x + 1)2 + (y - 2)2 + 9  \(\ge\)9

Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0  => x = -1 và y = 2

Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2) + 9 là 9 khi x = -1 và y = 2

3 tháng 9 2016

\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)

Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .

Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

16 tháng 12 2017

Ta có:

\(\left|x+5\right|\ge x+5\)

\(\Leftrightarrow\left|x+5\right|+2-x\ge x+5+2-x\)

\(\Leftrightarrow\left|x+5\right|+2-x\ge7\)

\(\Leftrightarrow A\ge7\)

Vậy \(MinA=7\) đạt được khi \(x+5\ge0\Leftrightarrow x\ge-5\)

14 tháng 4 2017

NT:(2x+1)^4>=0.Dấu ''='' xảy ra khi x=-1/2

=>(2x+1)^4-1>=-1.Dấu"=" xẩy ra khi x=-1/2

Vậy Min của biểu thức trên là -1

a: \(\left(2x+1\right)^4-1\ge-1\)

Dấu '=' xảy ra khi x=-1/2

b: \(\left(x^2-16\right)^2+\left|y-3\right|-2\ge-2\)

Dấu '=' xảy ra khi \(\left(x,y\right)\in\left\{\left(4;3\right);\left(-4;3\right)\right\}\)

31 tháng 1 2017

Ta có (x+1)^2\(\ge0với\forall x\)  (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)

=>B=(x+1)^2+(y+3)^2+1\(\ge1\)

31 tháng 1 2017

thanks bn nha !!!:D:D