Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Vì l 1/2-x l \(\ge0\) nên A đạt giá trị nhỏ nhất khi l 1/2-x l = 0
=> 1/2 -x =0 => x=1/2
2) Để B lớn nhất thì l 2x+2/3 l nhỏ nhất
=> l 2x + 2/3 l = 0
=> 2x + 2/3 = 0
=> 2x = -2/3
=> x = -1/3
1) ta có I 1/2 -xI\(\ge\)0
=>A=0,6+I 1/2 -xI\(\ge\)0,6
Dấu = xảy ra khi 1/2-x=0
x=1/2
Vậy GTNN của A là 0,6 tại x=1/2
2) ta có I2x+2/3I\(\ge\)0
=>-I2x+2/3I\(\le\)
=>B=2/3-I2x+2/3I\(\le\)2/3
Dấu = xảy ra khi 2x+2/3=0
2x =-2/3
x =-2/3:2
x =-1/3
Vậy GTLN của B là 2/3 tại x=-1/3
\(I=-3+\left|\frac{1}{2}-x\right|\)
Vì \(\left|\frac{1}{2}-x\right|\ge0\)
\(\Rightarrow-3+\left|\frac{1}{2}-x\right|\ge-3\)
Dấu = xảy ra khi \(\frac{1}{2}-x=0\Rightarrow x=\frac{1}{2}\)
Vậy Min I = -3 khi x=1/2
a)Ta thấy: \(\left|x-5\right|\ge0\Rightarrow A\ge0\)
Dấu "=" xảy ra khi \(x=5\)
Vậy \(Min_A=0\) khi \(x=5\)
b)Ta thấy: \(\left|5+x\right|\ge0\Rightarrow B\ge0\)
Dấu "=" xảy ra khi \(x=-5\)
Vậy \(Min_B=0\) khi \(x=-5\)
c)Ta thấy: \(\left|-x+2\right|\ge0\Rightarrow C\ge0\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(Min_C=0\) khi \(x=2\)
d)Ta thấy: \(\left|x+1\right|\ge0\Rightarrow D\ge0\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy \(Min_D=0\) khi \(x=-1\)
Z=|3x-3|+|x-4|-|3|
=3|x-1|+|x-4|-3
Ta có \(\left|x-1\right|\ge x-1\)
\(2\left|x-1\right|\ge0\)
\(\left|x-4\right|\ge4-x\)
\(\Rightarrow Z\ge x-1+0+4-x-3=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-1=0\\x-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=1\\x\le4\end{cases}\Leftrightarrow}x=1}\)
Có :
\(\left|1+x\right|\ge0\)
\(3+\left|1+x\right|\ge3\)
\(\Rightarrow Min=3\)
\(\Leftrightarrow x=-1\)
Vì GTTĐ của 1 số luôn lớn hơn hoặc =0( nhỏ nhất là 0)
Để Amin.
=>|1-x|min.
=>|1-x|=0.
=>1-x=0.
=>x=1.
Vậy.......