K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2021

M = -x2 - 8x + 5 

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Dấu "=" xảy ra <=> x = -4

Vậy MaxM = 21

11 tháng 5 2021

\(M=-x^2-8x\)\(+5\)

\(=-x^2-8x-16+21\)

\(=-\left(x^2+8x+16\right)+21\)

\(=-\left(x+4\right)^2+21\)

Vì \(\left(x+4\right)^2\ge0\)

\(\Rightarrow-\left(x+4\right)^2\le0\)

\(\Rightarrow M=-\left(x+4\right)^2+21\le21\)

Dấu " = " xảy ra \(\Leftrightarrow\) \(\left(x+4\right)^2=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy GTLN của M = 21 khi x = - 4

9 tháng 3 2016

Vì -x^2>=0

=>x>=0

=>-x^2-8x+5>=5

Dấu bằng xảy ra khi x=0

=>P có giá trị lớn nhất là 5

Vậy P có giá trị lớn nhất bằng 5

Minh nhanh nhat, nho k cho minh nhe!

15 tháng 8 2017

P= - (x^2-8x+16+y^2-10y+25)-124

P=-[(x-4)^2+(y-5)^2]-124

-[(x-4)^2+(y-5)^2] nhỏ hơn hoặc bằng 0 => P nhỏ hơn hoặc bằng -124

=> GTLN của P=-124 khi x=4 và y=5

9 tháng 10 2018

\(E=5-3\left(x+1\right)^2\le5\forall x\) ( tự suy luận mũ chẵn )

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy maxE = 5 <=> x = -1

2:

a: =-(x^2-12x-20)

=-(x^2-12x+36-56)

=-(x-6)^2+56<=56

Dấu = xảy ra khi x=6

b: =-(x^2+6x-7)

=-(x^2+6x+9-16)

=-(x+3)^2+16<=16

Dấu = xảy ra khi x=-3

c: =-(x^2-x-1)

=-(x^2-x+1/4-5/4)

=-(x-1/2)^2+5/4<=5/4

Dấu = xảy ra khi x=1/2

27 tháng 7 2023

1) 

a) \(A=x^2+4x+17\)

\(A=x^2+4x+4+13\)

\(A=\left(x+2\right)^2+13\) 

Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)

Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)

Vậy: \(A_{min}=13\) khi \(x=-2\)

b) \(B=x^2-8x+100\)

\(B=x^2-8x+16+84\)

\(B=\left(x-4\right)^2+84\)

Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)

Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)

Vậy: \(B_{min}=84\) khi \(x=4\)

c) \(C=x^2+x+5\)

\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)

\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)

27 tháng 2 2019

Ta có:

\(\left(\frac{1}{4}-2x\right)^2\ge0,\left|8x-1\right|\ge0\)

=> \(-\frac{1}{5}\left(\frac{1}{4}-2x\right)^2\le0,-\left|8x-1\right|\le0\)

=> \(C\le0+0\)+2016=2016

"=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{4}-2x=0\\8x-1=0\end{cases}\Leftrightarrow}x=\frac{1}{8}\)

Vậy C đạt giá trị lớn nhất là 2016 khi x=1/8

11 tháng 3 2017

a)Ta thấy: \(x^2\ge0\forall x\Rightarrow-x^2\le0\forall x\)

Đẳng thức xảy ra khi \(-x^2=0\Leftrightarrow x=0\)

b)Ta thấy: \(x^2\ge0\forall x\Rightarrow2x^2\ge0\forall x\Rightarrow-2x^2\le0\forall x\)

Đẳng thức xảy ra khi \(-2x^2=0\Leftrightarrow x=0\)

c)Ta thấy: \(x^4\ge0\forall x\Rightarrow-x^4\le0\forall x\Rightarrow3-x^4\le0\forall x\)

Đẳng thức xảy ra khi \(-x^4=0\Leftrightarrow x=0\)

d)Ta thấy: \(x^2\ge0\forall x\Rightarrow x^2+2\ge2\forall x\)

\(\Rightarrow\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)

Đẳng thức xảy ra khi \(x^2=0\Leftrightarrow x=0\)

d)Ta thấy: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow\dfrac{1}{\left(x-1\right)^2+4}\le\dfrac{1}{4}\forall x\)

Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

P/s: Mấy bài cỡ này bn nên tự làm đi, mình hứa từ giờ mấy bài cỡ này ko làm nữa (The one and only)

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

1. Áp dụng BĐT $|a|-|b|\leq |a-b|$ ta có:

$A=|x-1004|-|x+1003|\leq |x-1004-(x+1003)|=2007$

Vậy $A_{\max}=2007$

Giá trị này đạt được khi $x\leq -1003$

2. Biểu thức có min không có max bạn nhé

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

$A=|x-2|+|5-x|\geq |x-2+5-x|=3$

Vậy $A_{\min}=3$. Giá trị này đạt được khi $(x-2)(5-x)\geq 0$

$\Leftrightarrow 2\leq x\leq 5$

23 tháng 10 2020

dạ em cảm ơn ạ