K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2021

\(\dfrac{x^2+2}{x^2-2x+3}=\dfrac{2\left(x^2-2x+3\right)-x^2+4x-4}{x^2-2x+3}=2-\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2+2}\le2\)

Dấu "=" xảy ra khi \(x=2\)

AH
Akai Haruma
Giáo viên
21 tháng 12 2021

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

NV
2 tháng 3 2021

\(P=\sqrt{\left(x+2\right)\left(2x+1\right)}+2\sqrt{x+3}-2x\)

\(P\le\dfrac{1}{2}\left(x+2+2x+1\right)+\dfrac{1}{2}\left(4+x+3\right)-2x=5\)

\(P_{max}=5\) khi \(x=1\)

6 tháng 9 2021

hông biết mới học lớp 6 làm seo biết đc toán lớp 8 tự nghĩ đi nha

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

17 tháng 1 2018

Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)

                                                  \(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy Mmax = 2 khi x = 1

14 tháng 8 2020

Đặt:     \(A=\left(x-3\right)\left(x+3\right)+2\left(2x+1\right)^2\)

=>       \(A=x^2-9+2\left(4x^2+4x+1\right)\)

=>       \(A=x^2-9+8x^2+8x+2\)

=>       \(A=9x^2+8x-7\)

=>       \(A=\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\)

Có:      \(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

=>      \(A\ge-\frac{79}{9}\)

DẤU "=" XẢY RA <=>     \(\left(3x+\frac{4}{3}\right)^2=0\)

<=>     \(x=-\frac{4}{9}\)

Vậy A min =     \(-\frac{79}{9}\)      <=>       \(x=-\frac{4}{9}\)

15 tháng 8 2020

( x - 3 )( x + 3 ) + 2( 2x + 1 )2

= x2 - 9 + 2( 4x2 + 4x + 1 )

= x2 - 9 + 8x2 + 8x + 2

= 9x2 + 8x - 7

= 9x2 + 8x + 16/9 - 79/9

= ( 3x + 4/3 )2 - 79/9

\(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

Dấu " = " xảy ra <=> 3x + 4/3 = 0 => x = -4/9

=> GTNN của biểu thức = -79/9 <=> x =  -4/9

22 tháng 9 2016

a) \(x^2+2x+3\)

\(=x^2+2x+1+2\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2\)

Ta có:

\(\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+1\right)^2+2\ge2\)

Vậy MinA = 2 khi

\(\left(x+1\right)^2+2=2\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

22 tháng 9 2016

MIN A = 2 <=> X= -1 
MIN B = 7/4 <=> X = -1/2
MAX E = 10<=> X= 3 
MAX P = `<=> X= 1

23 tháng 10 2023

Ta có \(A=-x^2+2xy-4y^2+2x+10y-3\) 

\(A=-x^2+2\left(y+1\right)x-4y^2+10y-3\)

\(A=-x^2+2\left(y+1\right)x-\left(y+1\right)^2-3y^2+12y-2\)

\(A=-\left[x-\left(y+1\right)\right]^2-3\left(y^2-4y+4\right)+10\)

\(A=-\left(x-\left(y+1\right)\right)^2-3\left(y-2\right)^2+10\) \(\le10\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y+1\\y-2=0\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(3,2\right)\)

Vậy \(max_A=10\)

23 tháng 10 2023

?

29 tháng 5 2021

\(P=\dfrac{x^2+2}{x^2-2x+3}\)

\(\Leftrightarrow x^2\left(P-1\right)-2xP+3P-2=0\) (1)

Tại P=1 (*) pt trở thành:\(-2x+1=0\)\(\Leftrightarrow x=\dfrac{1}{2}\)

Tại \(P\ne1\)

Coi pt (1) là pt bậc 2 ẩn x

Pt (1) có nghiệm <=>\(\Delta=4P^2-4\left(P-1\right)\left(3P-2\right)\ge0\)

\(\Leftrightarrow-2P^2+5P-2\ge0\)

\(\Leftrightarrow\dfrac{1}{2}\le P\le2\) (2*)

Từ (*) ;(2*) => \(P_{max}=2\) \(\Leftrightarrow\) x=2

Vậy...

29 tháng 5 2021

Sorry,toi nhầm sang lớp 9