K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(A=\frac{2x+1}{x^2+2}\) 

Ta có: \(\hept{\begin{cases}2x+1\ge1\\x^2+2\ge2\end{cases}}\)

Để 2x+ 1 nhỏ nhất => 2x+ 1=1

     x2+ 2 nhỏ nhất => x2+ 2= 2

\(\Rightarrow A=\frac{0+1}{0+1}=\frac{1}{2}=0,5\)

Vậy GTNN của A= 0,5

4 tháng 12 2016

Ax^2+2A=2x+1

\(\Leftrightarrow Ax^2-2x+2A-1=1\)(*) A=0 <=>-2x-1=0=> luon co nghiem x

\(A\ne0\)(*) co nghiem can

delta(x)=1-A.(2a-1)>=0

\(\Leftrightarrow1-2a^2+a\ge0\Leftrightarrow2a^2-a-1\le0\Leftrightarrow\left(a-1\right)\left(a+\frac{1}{2}\right)\le0\)

\(-\frac{1}{2}\le A\le1\)

15 tháng 8 2018

a) \(A=x^2-2.10x+100+1\)

\(A=\left(x-10\right)^2+1>=1\)với mọi x

Dấu = xảy ra khi x-10 =0

                           =>x=10

Min A=1 khi x=10

b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3  mới làm dc

15 tháng 8 2018

a)A= \(\left(x^2-2.x.10+100\right)+1\)

=\(\left(x-10\right)^2+1>=1\)

Dấu "=" xảy ra <=> \(\left(x-10\right)^2=0\)<=> \(x-10=0\)<=>\(x=10\)

Vậy MinA = 1 khi x=10

1 tháng 8 2019

\(A=x^2-12x+7=x^2-12x+36-29\)

\(=\left(x-6\right)^2-29\ge-29\)

Vậy \(A_{min}=-29\Leftrightarrow x=6\)

1 tháng 8 2019

\(C=x-x^2-4=-\left(x^2-x+4\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{3}{4}\le-\frac{3}{4}\)

Vậy \(C_{min}=\frac{-3}{4}\Leftrightarrow x=\frac{1}{2}\)

7 tháng 3 2017

Bạn học  công thức delta chưa?

25 tháng 7 2018

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

25 tháng 7 2018

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)

b: Ta có: \(B=-2x^2+4x+1\)

\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)

\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)

\(=-2\left(x-1\right)^2+3\le3\forall x\)

Dấu '=' xảy ra khi x=1

6 tháng 5 2020

\(C=\frac{x^2-2x+2}{x^2+x+1}\)

\(\Leftrightarrow Cx^2+Cx+C=x^2-2x+2\)

\(\Leftrightarrow x^2\left(C-1\right)+x\left(C+2\right)+\left(C-2\right)=0\)

\(\Delta=\left(C+2\right)^2-4\left(C-2\right)\left(C-1\right)\)

\(=C^2+4C+4-4\left(C^2-3C+2\right)\)

\(=-3C^2+16C-4\)

Để pt có nghiệm thì \(\Delta\ge0\)

Bạn tự làm nốt

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)

\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)

"=" khi x=y=2

Vậy Min M là -2 khi x=y=2

30 tháng 4 2018

\(M=x^2+y^2-xy-2x-2y+2\)

\(4M=4x^2+4y^2-4xy-8x-8y+8\)

\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)

\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)

\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)

\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)

\(\Rightarrow4M\ge-8\)

\(\Leftrightarrow M\ge-2\)

Dấu "=" xảy ra khi :

a) Ta có: \(x\left(3-x\right)+1=3x-x^2+1\)

\(=-x^2+3x+1=-\left(x^2-3x-1\right)\)

\(=-\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-1\right)\)

\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\)

Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-\frac{3}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\le\frac{13}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy: Giá trị lớn nhất của biểu thức \(x\left(3-x\right)+1\)\(\frac{13}{4}\) khi \(x=\frac{3}{2}\)

b) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

\(\Rightarrow\frac{-1}{\left(x-3\right)^2+2}\ge\frac{-1}{2}\forall x\)

hay \(A=\frac{-1}{x^2-6x+11}\ge-\frac{1}{2}\forall x\)

Dấu '=' xảy ra khi \(\left(x-3\right)^2+2=2\)

hay \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=\frac{-1}{x^2-6x+11}\)\(-\frac{1}{2}\) khi x=3

9 tháng 2 2020

a, Ta có : \(x\left(3-x\right)+1\)

= \(3x-x^2+1\)

= \(-\left(x^2-3x-1\right)\)

= \(-\left(x^2-2.x.\frac{3}{2}+2,25-3,25\right)\)

= \(-\left(\left(x-1,5\right)^2-3,25\right)\)

= \(3,25-\left(x-1,5\right)^2\)

Ta thấy : \(\left(x-1,5\right)^2\ge0\forall x\)

=> \(-\left(x-1,5\right)^2\le0\)

=> \(3,25-\left(x-1,5\right)^2\le3,25\)

- Dấu " = " xảy ra khi \(x-1,5=0\)

=> \(x=1,5\)

Vậy Max = 3,25 khi x = 1,5 .