Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2x^2+10x-1\)
\(\Rightarrow2B=\left(4x^2+20x+25\right)-27\)
\(\Rightarrow2B=\left(2x+5\right)^2-27\ge-27\forall x\)
\(\Rightarrow B\ge-\frac{27}{2}\)
Dấu bằng xảy ra khi: \(\left(2x+5\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
a) Ta có : \(A=-6x+x^2+11\)
\(\Rightarrow A=\left(x^2-6x+9\right)+2\)
\(\Rightarrow A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(minA=2\Leftrightarrow x=3\)
b) \(B=-1+2x^x+10x\)
\(\Rightarrow\)Tớ đang thắc mắc cái chỗ 2xx :)))
tìm GTNN:
a) \(x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x-2\right)^2+1\ge1\)
vậy GTNN của biểu thức trên =1 khi x=2
a) Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
=> (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là 4 khi x = 1
\(A=2x^2+10x-1=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
=> Min A \(=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)
\(B=5x^2-x=5\left(x-\frac{1}{10}\right)^2-\frac{1}{20}\ge-\frac{1}{20}\)
=> Min B \(=-\frac{1}{20}\Leftrightarrow x=\frac{1}{10}\)
A=\(x^2+8x+20=x^2+8x+16+4=\left(x+4\right)^2+4\)
vì \(\left(x+4\right)^2\ge0\) với mọi x => \(\left(x+4\right)^2+4\ge4\) với mọi x
Amin=4 khi (x+4)^2=0 => x=-4
B=\(2x^2+10x+20=2\left(x^2+5x+10\right)=2\left(x^2+5x+\frac{25}{4}+\frac{15}{4}\right)\)
\(=2\left(x+\frac{5}{2}\right)^2+\frac{15}{2}\)
vì \(2\left(x+\frac{5}{2}\right)^2\ge o\) với mọi x
=>\(2\left(x+\frac{5}{2}\right)^2+\frac{15}{2}\ge\frac{15}{2}\) với mọi x
Bmin=15/2 khi x=-5/2
\(A=2x^2+4y^2+4xy+10x+12y+18\)
\(A=x^2+4xy+4y^2+6x+12y+9+x^2+4x+4+5\)
\(A=\left(x+2y\right)^2+2.3\left(x+2y\right)+9+\left(x+2\right)^2+5\)
\(A=\left(x+2y+3\right)^2+\left(x+2\right)^2+5\)
Do : \(\hept{\begin{cases}\left(x+2y+3\right)^2\ge0\forall x\\\left(x+2\right)^2\ge0\forall x\end{cases}}\)
\(\Leftrightarrow\left(x+2y+3\right)^2+\left(x+2\right)^2+5\ge5\)
\("="\Leftrightarrow\hept{\begin{cases}x+2y+3=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=-2\end{cases}}}\)
Vậy \(A_{min}=5\Leftrightarrow\hept{\begin{cases}x=-2\\y=-\frac{1}{2}\end{cases}}\)
Chúc bạn học tốt !!!
C\(=-1892+2x^2+y^2-2xy+10x\)
\(=\left(x-y\right)^2+\left(x+5\right)^2-1917\ge-1917\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+5\right)^2=0\end{cases}}\Rightarrow x=y=-5\)
Vậy min C=-1917 khi x=y=-5
Đề bài thiếu dữ kiện bạn ơi sao chỉ có ẩn x ko vậy ??????????
\(B=2x^2+10x=2x^2+10x+\frac{25}{2}-\frac{25}{2}=2\left(x^2+5x+\frac{25}{4}\right)-\frac{25}{2}\)
\(=2\left(x^2+2\cdot\frac{5}{2}x+\left(\frac{5}{2}\right)^2\right)-\frac{25}{2}=2\left(x+\frac{5}{2}\right)^2-\frac{25}{2}\)
vì \(2\left(x+\frac{5}{2}\right)^2>=0;-\frac{25}{2}=-\frac{25}{2}\Rightarrow2\left(x+\frac{5}{2}\right)^2-\frac{25}{2}>=-\frac{25}{2}\)
dấu = xảy ra khi \(2\left(x+\frac{5}{2}\right)^2=0\Rightarrow x+\frac{5}{2}=0\Rightarrow x=-\frac{5}{2}\)
vậy min của B là \(-\frac{25}{2}\)tại x=\(-\frac{5}{2}\)