Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{3x^2+8x+6}{x^2+2x+1}=\dfrac{-2\left(x^2+2x+1\right)+x^2+4x+4}{x^2+2x+1}=-2+\left(\dfrac{x+2}{x+1}\right)^2\ge-2\)
\(S_{min}=-2\) khi \(x=-2\)
\(\frac{3x^2-8x+6}{x^2-2x+1}\)
=\(\frac{2x^2-x^2-4x-4x+2+4}{x^2-2x+1}\)
=\(\frac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)
=\(\frac{2\left(x^2-2x+1\right)+\left(x^2-4x+4\right)}{x^2-2x+1}\)
=\(2+\frac{x^2-4x+4}{\left(x-1\right)^2}\)
=\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\)
Vì \(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\) với mọi x
<=>\(2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\) > 2 với mọi x
Dấu "=" xảy ra khi và chỉ khi x=-2 thì Min =2
Vậy Min=2
gợi ý nha:
https://olm.vn/hoi-dap/question/1035789.html
k mik đi
@_@
Lik đó bạn:olm.vn/hoi-dap/question/1035789.html
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
Ta có \(\frac{3x^2+8x+6}{x^2+2x+1}=\frac{3x^2+6x+3+2x+2+1}{\left(x+1\right)^2}=\frac{3\left(x+1\right)^2+2\left(x+1\right)+1}{\left(x+1\right)^2}\)
\(=3+\frac{2}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(\frac{1}{x+1}=t\), biểu thức trở thành: \(t^2+2t+3=\left(t+1\right)^2+2\ge2\)
Vậy GTNN của phân thức là 2, khi t = -1 tức là x = -2.
Viết A dưới dạng biểu thức không âm :
A=\(\frac{\left(2x^2-4x+2\right)+\left(x^2-4x+4\right)}{x^2-2x+1}=2+\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Vậy GTNN của A=2 khi và chỉ khi x=2
Đặt x-1=y thì x=y+1.ta có :
A=\(\frac{3\left(y+1\right)^2-8\left(y+1\right)+6}{y^2}=\frac{3y^2-2y+1}{y^2}=3-\frac{2}{y}+\frac{1}{y^2}\)
Lại đặt \(\frac{1}{y}=z\) thì
A=3-2z+z2=(z-1)2+2\(\ge\) 2
Vậy GTNN của A=2 \(\Leftrightarrow\) z=1\(\Leftrightarrow\) y=1\(\frac{1}{x-1}=1\Leftrightarrow x=2\)
a.
\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)
\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)
\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)
b.
Đặt \(x-1=t\Rightarrow x=t+1\)
\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)
\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)
\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Dấu \("="\Leftrightarrow x=2\)
Ta có: \(A=2x^2-8x+1=2x^2-2.2x.2+2^2-3\)
\(=\left(2x-2\right)^2-3\)
Vì \(\left(2x-2\right)^2\ge0\left(\forall x\right)\)
\(\Rightarrow A=\left(2x-2\right)^2-3\le-3\left(\forall x\right)\)
Dấu "=" xảy ra khi \(2x-2=0\Rightarrow x=1\)
Vậy Amax = -3 khi x = 1
Ta có \(B=-5x^2-4x+1=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{9}{25}\right)=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\forall x\)
Dấu "=" xảy ra khi x+2/5=0 => x=-2/5
Vậy GTNN của B là 9/5 khi x=-2/5