Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = |x| + 2017
\(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+2017\ge2017\forall x\)
Đẳng thức xảy ra \(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
Vậy GTNN của A = 2017 \(\Leftrightarrow x=0\)
B = |5 - y| + 2016
\(\left|5-y\right|\ge0\forall y\)
\(\Rightarrow\left|5-y\right|+2016\ge2016\forall y\)
Đẳng thức xảy ra \(\Leftrightarrow\left|5-y\right|=0\Leftrightarrow5-y=0\Leftrightarrow y=5\)
Vậy GTNN của B = 2016 \(\Leftrightarrow y=5\)
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
a/ A = x2 + (y - 1)4 - 3
Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0
=> A = x2 + (y - 1)4 - 3 \(\ge\)-3
Đẳng thức xảy ra khi: x = 0 và y - 1 = 0 => x = 0 và y = 1
Vậy GTNN của A là -3 khi x = 0 và y = 1
b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995
Mà: 3x2\(\ge\)0 => B = 3x2 + 1995 \(\ge\)1995
Đẳng thức xảy ra khi: 3x2 = 0 => x = 0
Vậy GTNN của B là 1995 khi x = 0
c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15
Mà: x2\(\ge\)0 => x2 - 15\(\ge\)-15
Đẳng thức xảy ra khi: x2 = 0 => x = 0
Vậy GTNN cảu C là -15 khi x = 0
\(A=\left(x-1\right)^2+2016\)
Vì \(\left(x-1\right)^2\ge0\)
\(=>GTNN\left[\left(x-1\right)^2\right]=0\)
Vậy \(A_{min}=0+2016=2016\)
Để A đạt giá trị nhỏ nhất thì \(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(B=Ix+10I+2016\)
Vì \(Ix+10I\ge0\)
Nên \(GTNN\left(Ix+10I\right)=0\)
Vậy \(B_{min}=0+2016=2016\)
Để B đạt giá trị nhỏ nhất thì \(Ix+10I=0\)
\(x+10=0\Rightarrow x=-10\)
\(C=\frac{5}{x-2}\)
Khi \(x-2\) càng lớn thì \(C=\frac{5}{x-2}\)càng nhỏ
Mà để C là số nguyên thì \(\left(x-2\right)\in\left\{-5;5\right\}\)
Mà \(\left(-5\right)< 5\)
=> \(GTNN\left(x-2\right)=-5\)
\(\Rightarrow x=\left(-5\right)+2=-3\)
a, A=|x+2|+5
Vì |x+2| \(\ge\) 0 \(\forall\) x
=> |x+2|+5\(\ge5\forall x\)
Dấu = xảy ra <=> x+2=0
<=> x=-2
Vậy.....
b, B=|x-100|+|y+200|-7
Vì |x-100| \(\ge0\forall x\)
|y+200| \(\ge0\forall y\)
=> \(\left|x-100\right|+\left|y+200\right|-7\ge-7\forall x,y\)
Dấu = xảy ra <=> \(\hept{\begin{cases}x-100=0\\y+200=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
vậy.........
a) xx là x^2 hả ??? (tính sau nha)
b)Ta có \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow B\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-100=0\\y+200=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(B_{min}=-1\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
c)pt o có GTLN
Tham khảo(nếu a ko có xx)
https://olm.vn/hoi-dap/detail/97637814260.html