Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+y^2+2xy-6x-2y+10\)
\(=\left(x^2-4x+4\right)+\left(x^2+y^2+1+2xy-2y-2x\right)+5\)
\(=\left(x-2\right)^2+\left(x+y-1\right)^2+5\ge5\)
a) \(A=x^2+6x+10\)
\(A=x^2+2\cdot x\cdot3+3^2+1\)
\(A=\left(x+3\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
b) \(B=2x^2+y^2+2xy+4x+15\)
\(B=\left(x^2+2xy+y^2\right)+\left(x^2+2\cdot x\cdot2+2^2\right)+11\)
\(B=\left(x+y\right)^2+\left(x+2\right)^2+11\ge11\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=2\\x=-2\end{cases}}\)
\(B=2x^2+y^2+2xy+6x+2y+2015\)
\(=x^2+y^2+1+2xy+2y+2x+x^2+4x+4+2011\)
\(=\left(x^2+y^2+1+2xy+2y+2x\right)+\left(x^2+4x+4\right)+2011\)
\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2011\)
Vì \(\left(x+y+1\right)^2+\left(x+2\right)^2\ge0\)nên \(\left(x+y+1\right)^2+\left(x+2\right)^2+2011\ge2011\)
Vậy \(MinB=2011\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
\(P=2x^2+y^2+2xy-6x-2y+10\)
\(P=\left(x^2+y^2+1^2-2y-2x\right)+\left(x^2-4x+4\right)+5\)
\(P=\left(x+y-1\right)^2+\left(x-2\right)^2+5\)
\(\left\{{}\begin{matrix}\left(x+y-1\right)^2\ge0\\\left(x-2\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow P\ge5\) đẳng thức khi \(\left\{{}\begin{matrix}x-2=0\\x+y-1=0\end{matrix}\right.\) => x=2 và y=-1
2x2 + y2 + 2xy - 6x - 2y + 10
= x2 + y2 + 12 + 2xy - 2x - 2y + x2 - 4x + 4 + 5
= (x + y - 1)2 + (x - 2)2 + 5 \(\ge\) 5
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x+y-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
Vậy Min = 5 khi x = 2 và y = - 1
\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)
P=2x2+y2-2xy-6x+2y+2024
=>2P=4x2+2y2-4xy-12x+4y+4048
=(2x-y-3)2+y2-2y+1+4038
=(2x-y-3)2+(y-1)2+4038> hoặc = 4038
Dấu = xảy ra <=>2x-y-3=0 và y-1=0=>x=2;y=1=>2p=4038=>p=2019
Vậy Pmin=2019<=>x=2;y=1
Ta có:
P = 2x2 + y2 - 2xy - 6x + 2y + 2024
P = (x2 - 2xy + y2) - 2(x - y) + 1 + (x2 - 4x + 4) + 2019
P = [(x - y)2 - 2(x - y) + 1] + (x - 2)2 + 2019
P = (x - y - 1)2 + (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x-1\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy MinP = 2019 <=> x = 2 và y = 1
\(A=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ A_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
2x2 + y2 + 2xy - 6x - 2y + 10
= x2 + y2 + 12 + 2xy - 2x - 2y + x2 - 4x + 4 + 5
= (x + y - 1)2 + (x - 2)2 + 5 ≥≥ 5
Dấu ''='' xảy ra khi {x+y−1=0x−2=0{x+y−1=0x−2=0 ⇔{y=−1x=2⇔{y=−1x=2
Vậy Min = 5 khi x = 2 và y = - 1
Ta có: \(B=2x^2+y^2-2xy+6x+10\)
\(=x^2-2xy+y^2+x^2+6x+9+1\)
\(=\left(x-y\right)^2+\left(x+3\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=y=-3
Vậy: \(B_{min}=1\) khi (x,y)=(-3;-3)