K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

\(A=a^4-2a^3+3a^2-4a+5\)

\(=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)

\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Dấu =  xảy ra khi a = 1

15 tháng 3 2017

1 nha bạn

27 tháng 5 2021

\(\dfrac{2a^2-3a-2}{a^2-4}=2\)

\(\Leftrightarrow2a^2-3a-2-2a^2+8=0\)

\(\Leftrightarrow-3a+6=0\)

\(\Leftrightarrow a=2\)

27 tháng 5 2021

ĐK: `a \ne \pm 2`

`(2a^2-3a-2)/(a^2-4)=2`

`<=>2a^2-3a-2=2(a^2-4)`

`<=>2a^2-3a-2=2a^2-8`

`<=>-3a-2=-8`

`<=>-3a=-6`

`<=>a=2` (Loại)

Vậy không có `a` thỏa mãn.

17 tháng 8 2016

chờ bông băng đi cấp cứu đã

 

17 tháng 8 2016

bà kiếm mấy bài cực trị này ở đâu z? chỉ t vs ,cho t đề cx đc

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Lời giải:

a.

\(A=\left[\frac{(2+x)^2}{(2-x)(2+x)}+\frac{4x^2}{(2-x)(2+x)}-\frac{(2-x)^2}{(2-x)(2+x)}\right]:\frac{x(x-3)}{x^2(2-x)}\)

\(=\frac{(2+x)^2+4x^2-(2-x)^2}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x^2}{x-3}\)

b.

Khi $x=12$ thì $A=\frac{4.12^2}{12-3}=64$

c. 

$A=1\Leftrightarrow \frac{4x^2}{x-3}=1$

$\Leftrightarrow 4x^2=x-3$

$\Leftrightarrow 4x^2-x+3=0$

$\Leftrightarrow (2x-\frac{1}{4})^2=-\frac{47}{16}< 0$ (vô lý)

Vậy không tồn tại $x$

d. Để $A$ nguyên thì $\frac{4x^2}{x-3}$ nguyên

$\Leftrightarrow 4x^2\vdots x-3$

$\Leftrightarrow 4(x^2-9)+36\vdots x-3$

$\Leftrightarrow 36\vdots x-3$

$\Leftrightarrow x-3\in\left\{\pm 1;\pm 2;\pm 3;\pm 4;\pm 9; \pm 12; \pm 36\right\}$

Đến đây bạn có thể tự tìm $x$ được rồi, chú ý ĐKXĐ để loại ra những giá trị không thỏa mãn.

e.

$A>4\Leftrightarrow \frac{4x^2}{x-3}>4$

$\Leftrightarrow \frac{x^2}{x-3}>1$

$\Leftrightarrow \frac{x^2-x+3}{x-3}>0$

$\Leftrightarrow x-3>0$ (do $x^2-x+3>0$ với mọi $x$ thuộc ĐKXĐ)

$\Leftrightarrow x>3$. Kết hợp với đkxđ suy ra $x>3$

 

9 tháng 6 2021

a, ĐKXĐ: \(x\ne1;x\ne-1\)

b, Với \(x\ne1;x\ne-1\)

\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)

=> ĐPCM

1 tháng 2 2017

Câu 8:

ĐK \(\hept{\begin{cases}x\ne0\\x\ne3\end{cases}}\)

\(A=\frac{x^2}{\left(x-3\right)}.\frac{\left(x-3\right)^2}{x}-4=x\left(x-3\right)-4=x^2-3x-4=\left(x-\frac{3}{2}\right)^2-\frac{25}{4}\\ \)

a) \(A< -6\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{1}{4}< 0\) vô nghiệm

b) A>=-25/4 khi x=3/2

2 tháng 7 2015

4x2+4x+5

=(2x)2+2.2x.1+1+4

=(2x+1)2+4

mà (2x+1)2\(\ge\)0 => (2x+1)2+4 \(\ge\)4 => biểu thức có GTNN là 4 <=> 2x+1=0

                                                                                                          2x=-1

                                                                                                            x=-1/2

2 tháng 7 2015

x = -1/2

**** cho tui nha mấy chế