Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: C= |2000x+2016|+|2000x-2017|
=> C = |2000x+2016+2000x-2017|
= 4000x-1 <= -1
Dấu "=" xảy ra khi 4000x=0 => x=0
Vậy Cmax=-1 khi x=0
Không chắc. Chúc bạn học giỏi!
C=|2000x+2016|+|2000x-2017|=|2000x+2016|+|2017-2000x|
Áp dụng : |A|+|B|>=|A+B|
dấu "=" xảy ra <=>A.B=0 ta có
C=|2000x+2016|+|2017-2000x|>=|2000x+2016+2017-200x|=4033
dấu "=" xảy ra <=>(2000x+2016).(2017-2000x)=0
<=>2000x+2016=0=>2000x=-2016=>x=1.008
hoặc 2017-2000x=0=>x=2017:2000=1,0085
vaayjMaxC=4033<=>x=.......
Ta có \(\left|2000x+2012\right|+\left|2013-2000x\right|\ge\left|2000x+2012+2013-2000x\right|=\left|4025\right|=4025\)
^.^
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)
Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất
Ta có: \(\left|x-2016\right|\ge0\)
\(\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)
Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)
Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016
Ta có :
\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)
\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)
\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)
<=> |x - 2016| = 0
<=> x = 2016
Ta có:
|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|
=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|
=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)
∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:
|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|
≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2
∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x
⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2
Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016
Vậy GTNNGTNN của biểu thức là 2⇔x=2016
Ta có:
|x − 2015| + |x − 2016| + |x − 2017|
= |x − 2016| + |x − 2015| + |x - 2017|
= |x − 2016|+(| x− 2015| + |x − 2017|)
∗)∗) Áp dụng BĐT |a| + |b| ≥ |a + b|, ta có:
|x − 2015|+|x − 2017| = |x − 2015|+|2017 − x|
≥ |x − 2015 + 2017 − x| = |2| = 2
∗) Dễ thấy: |x − 2016| ≥ 0 ∀ x
⇔|x − 2015| + |x − 2016| + |x − 2017|
Đẳng thức xảy ra ⇔x−2015≥0
x−2016=0
x−2017≤0 ⇔x≥2015 (Loại)
x=2016 (TM)
x≤2017 (Loại)
Vậy x=2016
Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)
Áp dụng bđt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Trở lại bài toán ta có:
\(C=\left|2000x+2016\right|+\left|2000x-2017\right|\)
\(C=\left|2000x+2016\right|+\left|2017-2000x\right|\)
\(C\ge\left|2000x+2016+2017-2000x\right|=4033\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2000x+2016\ge0\\2017-2000x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2000x+2016\le0\\2017-2000x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2000x\ge-2016\\2000x\le2017\end{matrix}\right.\\loại\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{2016}{2000}\\x\le\dfrac{2017}{2000}\end{matrix}\right.\)
Vậy \(-\dfrac{2016}{2000}\le x\le\dfrac{2017}{2000}\)
bạn ơi còn cách phân tích từng giá trị tuyệt đối thì làm kiểu gì bạn?