K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

khó thật

30 tháng 3 2017

Áp dụng BĐT AM-GM ta có: 

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\Rightarrow3\left(\frac{x}{y}+\frac{y}{x}\right)\ge6\)

Cộng theo vế 2 BĐT trên ta có:\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge2-6=-4 \)

\(\Rightarrow P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge-4+5=1\)

Đẳng thức xảy ra khi \(x=y\)

NV
9 tháng 5 2020

Đặt \(t=\frac{x}{y}+\frac{y}{x}>0\Rightarrow t^2=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\Rightarrow t\ge2\)

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)

\(\Rightarrow B=2\left(t^2-2\right)-5t+6=2t^2-5t+2\)

\(B=\left(2t-1\right)\left(t-2\right)\)

Do \(t\ge2\Rightarrow\left\{{}\begin{matrix}2t-1>0\\t-2\ge0\end{matrix}\right.\) \(\Rightarrow B\ge0\)

\(B_{min}=0\) khi \(t=2\) hay \(x=y\)

28 tháng 3 2019

Thêm đk: x;y>0

\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)

\(\Leftrightarrow P=\frac{x^2}{y^2}+1+\frac{y^2}{x^2}+1-3\left(\frac{x}{y}+\frac{y}{x}\right)\)

Áp dụng BĐT AM-GM ta có:

\(P\ge2\left(\frac{x}{y}+\frac{y}{x}\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+3\)

\(P\ge\left(\frac{x}{y}+\frac{y}{x}\right)\left(2-3\right)+3\)

\(P\ge2\left(2-3\right)+3=1\)

Dấu " = " xảy ra <=> x=y=1

9 tháng 12 2018

\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)

\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)

\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)

\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)

Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)

\(\Leftrightarrow A\ne0\forall x;y\)

theo nghiệm Fx=Gx mũ 2 

suy ra x mũ 2 +1 mũ x 2 

suy ra chịch chịch chịch

31 tháng 5 2020

nguuuuuuuuuuuuuuuu

3 tháng 12 2016

Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+1+1+\frac{1}{x^2y^2}\)\(\Rightarrow\frac{x^4y^4+2x^2y^2+1}{x^2y^2}=\frac{\left(x^2y^2+1\right)^2}{x^2y^2}=\left(xy+\frac{1}{xy}\right)^2\)\(Tac\text{ó}:xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\)\(\text{ \text{áp} d\text{ụng} b\text{đ}t c\text{ô} si ta c\text{ó}: }\)

Áp dụng bddt cô si ta có :\(xy+\frac{1}{16xy}\ge2\sqrt{\frac{xy.1}{16xy}}=\frac{2.1}{4}=\frac{1}{2}\)

\(xy\le\frac{\left(x+y\right)^{2\Rightarrow}}{4}\Rightarrow xy\le\frac{1}{4}\Rightarrow\)\(\frac{1}{16xy}\ge\frac{4}{16}\Leftrightarrow\)\(\frac{15}{16xy}\le\frac{60}{16}=\frac{15}{4}\)\(\Rightarrow M=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{1}{2}+\frac{15}{4}\right)^2=\left(\frac{17}{4}\right)^2=\frac{289}{16}\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

29 tháng 11 2019

Đặt \(A=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=y^2\left(x^2+\frac{1}{y^2}\right)+\frac{1}{x^2}\left(x^2+\frac{1}{y^2}\right)\)

\(=x^2y^2+1+1+\frac{1}{x^2y^2}\)

\(=x^2y^2+\frac{1}{x^2y^2}+2\)

\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)

Áp dụng BĐT Cauchy cho 2 số không âm:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

C/m bđt phụ : \(1=\left(x+y\right)^2\ge4xy\)

\(\Rightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)

\(\Rightarrow A\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))

NV
30 tháng 5 2020

Cần điều kiện x;y dương

\(M=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)

\(M\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)

\(M_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)

7 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)

Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)

Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x = y = 1/2

Vậy MinA = 18 

10 tháng 5 2019

Chứng minh BĐT phụ:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Giờ thì chứng minh thôi:3

Áp dụng BĐT Cauchy-schwarz dạng engel ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)

26 tháng 5 2019

Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)

=> Min P=18

3 tháng 8 2015

Đặt  \(\frac{x}{y}+\frac{y}{x}=t\)

=>  \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)

Thay vào ta có :

          \(t^2-2-3t+5=t^2-3t+3=t^2-2.t\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(t-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

VẬy GTNN của BT là 5/4 khi \(\frac{x}{y}+\frac{y}{x}=0\) ( bạn tự tính ra x;y nha)

Tick đúng nha 

3 tháng 8 2015

gtnn=1 áp dụng bđt :\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\Leftrightarrow x=y\)