K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

a) \(A=4x^2-4x+9=\left(4x^2-4x+1\right)+8\)

\(=\left(2x-1\right)^2+8\ge8\)

\(minA=8\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=\left(x^2-4x+4\right)+\left(y^2+5y+\dfrac{25}{4}\right)-\dfrac{13}{4}\)

\(=\left(x-2\right)^2+\left(y+\dfrac{5}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\)

\(minC=-\dfrac{13}{4}\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=-\dfrac{5}{2}\end{matrix}\right.\)

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

29 tháng 8 2021

\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)

Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)

\(ĐTXR\Leftrightarrow x=1\)

29 tháng 8 2021

cảm ơn bạn

 

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

31 tháng 8 2017

A=2(x2+2.x.4+16)−49≥−49A=2(x2+2.x.4+16)−49≥−49.Dấu "=" xảy ra khi x=−4x=−4

tk nhé

\(5x^2-6x+9\)

\(=5\left(x^2-\frac{6}{5}x+\frac{9}{5}\right)\)

\(=5\left(x^2-2.x.\frac{3}{5}+\frac{9}{25}+\frac{36}{25}\right)\)

\(=\frac{35}{5}+5\left(x-\frac{3}{5}\right)^2\ge\frac{35}{5}\)

Min \(=\frac{35}{5}\Leftrightarrow x-\frac{3}{5}=0\Rightarrow x=\frac{3}{5}\)

2 tháng 8 2016

\(x^2-2x+1+4x^2-4x+1+7\)

\(\left(x-1\right)^2+\left(2x-1\right)^2+7\)

vì \(\left(x-1\right)^2>=0\)

\(\left(2x-1\right)^2>=0\)

=> \(\left(x-1\right)^2+\left(2x-1\right)^2+7>=7\)

dấu '=' xảy ra khi x=1

                          x=1/2

vậy gtnn của bt = 7 đạt được khi x=1 và x= 1/2

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:

$A=2x^2+y^2+2xy+2x-2y+2023$

$=(x^2+2xy+y^2)+x^2+2x-2y+2023$

$=(x+y)^2-2(x+y)+x^2+4x+2023$

$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$

$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$

$\Leftrightarrow x=-2; y=3$