K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

Đặt \(\sqrt[3]{x^2+1}=t\left(t\ge1\right)\)

\(y=f\left(t\right)=t^2-t+1\)

\(minf\left(t\right)=f\left(1\right)=1\)

\(minf\left(t\right)=1\Leftrightarrow t=1\Leftrightarrow\sqrt[3]{x^2+1}=1\Leftrightarrow x=0\)

11 tháng 12 2020

Ta có: \(y=\sqrt{3+x}+\sqrt{5-x}\)

ĐKXĐ: \(-3\le x\le5\)

\(y^2=3+x+5-x+2\sqrt{\left(3+x\right)\left(5-x\right)}=8+2\sqrt{\left(3+x\right)\left(5-x\right)}\)\(\ge8\)

\(\Rightarrow y\ge2\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)(thỏa mãn)

Vậy min y = \(2\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

mặt khác \(y^2\) = \(8+2\sqrt{\left(3+x\right)\left(5-x\right)}\le8+3+x+5-x=16\)

\(\Rightarrow y\le4\)

Dấu"=" xảy ra khi và chỉ khi \(3+x=5-x\Leftrightarrow x=1\)(thỏa mãn)

Vậy max y = 4 \(\Leftrightarrow x=1\)

25 tháng 8 2021

a)x khác 1;2      b)x khác 2;1/2   c)x khác -1     d)x khác 1     e x>/=-2

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

28 tháng 1 2023

f. 

\(x+1>0\) và \(7-2x>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)

g.

\(x+1>0\) và \(x^2-4\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)

 

h: ĐKXĐ: |x+1|-|x-2|<>0

=>|x+1|<>|x-2|

=>x-2<>x+1 và x+1<>-x+2

=>2x<>1

=>x<>1/2

g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0

=>x>-2 và x>-1 và x<>2; x<>-2

=>x>-1; x<>2

f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x

=>3x<>6 và -1<=x<=7/2

=>x<>2 và -1<=x<=7/2

25 tháng 10 2021

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hàm \(y = 2{x^3} + 3x + 1\) là hàm đa thức nên có tập xác định \(D = \mathbb{R}\)

b) Biểu thức \(\frac{{x - 1}}{{{x^2} - 3x + 2}}\)có nghĩa khi \({x^2} - 3x + 2 \ne 0 \Leftrightarrow x \ne 1\)và \(x \ne 2\)

Vậy tập xác định của hàm số đã cho là \(D = \mathbb{R}/\left\{ {1;2} \right\}\)

c) Biểu thức \(\sqrt {x + 1}  + \sqrt {1 - x} \) có nghĩa khi \(x + 1 \ge 0\) và \(1 - x \ge 0\), tức là \( - 1 \le x \le 1\)

Vậy tập xác định của hàm số đã cho là \(D = \left[ { - 1;1} \right]\)

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

13 tháng 1 2021

Đạo hàm đi bạn :D Cho nhanh

\(y=f\left(x\right)=x^4-2x^2\)

\(\Rightarrow f'\left(x\right)=4x^3-4x\)

\(f'\left(x\right)=0\Leftrightarrow4x^3-4x=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=0\end{matrix}\right.\)

\(f\left(1\right)=-1;f\left(-2\right)=8;f\left(-1\right)=-1;f\left(0\right)=0\)

\(\Rightarrow y_{min}=-1;"="\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(y_{max}=8;"="\Leftrightarrow x=-2\)

13 tháng 1 2021

Đặt \(x^2=t\left(0\le t\le4\right)\)

\(y=f\left(t\right)=t^2-2t\)

\(minf\left(t\right)=min\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(1\right)=-1\)

\(maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(4\right)=8\)

\(min=-1\Leftrightarrow x=\pm1\)

\(max=8\Leftrightarrow x=-2\)

e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

3 tháng 12 2021

\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)

Vậy hàm số lẻ

\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)

Vậy hàm số chẵn

\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)

Vậy hàm số lẻ

\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)

Vậy hàm số lẻ