Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+3\left(2x-1\right)^2\)
Vì \(\left(2x-1\right)^2\ge0\) với mọi x
=>\(5+\left(2x-1\right)^2\ge5\)
Vậy GTNN của A là 5 khi x=1/2
a) 3x - 2 = 0 => 3x = 2 => x = 2/3
b) 2x - 1 = 0 => 2x = 1 => x = 1/2
c) 5 ( 4+2x) = 8+5x
<=> 20 + 10x = 8 + 5x
<=> 10x - 5x = 8 - 20
<=> 5x = -12
x = -12/5
d) \(\frac{1}{2}+\frac{3}{4}x=6-\frac{4}{5}x\)
\(\frac{3}{4}x+\frac{4}{5}x=6-\frac{1}{2}\)
\(\frac{31}{20}x=\frac{11}{2}\)
\(x=\frac{11}{2}:\frac{31}{20}=\frac{110}{31}\)
e) 3 + 2x = 4 - 8x
<=> 2x + 8x = 4 - 3
10 x = 1
x = 1/10
f \(5+\frac{1}{2}\left(x+5\right)=3\)
\(\frac{1}{2}\left(x+5\right)=3-5=-2\)
\(x+5=-2:\frac{1}{2}=-4\)
\(x=-4-5=1\)
Vậy ......
Ta có
\(\left(2x-1\right)^2\ge0\) với mọi x
\(\Rightarrow3\left(2x-1\right)^2\ge0\)
\(\Rightarrow5+3\left(2x-1\right)^2\ge5\)
Dấu " = " xáy ra khi 2x+1=0
=>x=-1/2
Vậy MINC=5 khi x= - 1/2
\(5+3\left(2x-1\right)^2\)
\(5+3\left[\left(2x^2\right)-2.2x.1+1^2\right]\)
\(\Rightarrow\left(2x-1\right)^2\ge0\)
\(\Rightarrow8\left(2x-1\right)^2\ge8\)
Vậy giá trị nhỏ nhất là 8
Khi 2x - 1 = 0
2x = 1
x = 1/2
a.
\(\frac{2}{3}x-\frac{3}{2}x=\frac{5}{12}\)
\(\left(\frac{2}{3}-\frac{3}{2}\right)\times x=\frac{5}{2}\)
\(\left(\frac{4-9}{6}\right)\times x=\frac{5}{2}\)
\(-\frac{5}{6}\times x=\frac{5}{2}\)
\(x=\frac{5}{2}\div\left(-\frac{5}{6}\right)\)
\(x=\frac{5}{2}\times\left(-\frac{6}{5}\right)\)
\(x=-3\)
b.
\(\frac{2}{5}+\frac{3}{5}\times\left(3x-3,7\right)=-\frac{53}{10}\)
\(\frac{3}{5}\times\left(3x-3,7\right)=-\frac{53}{10}-\frac{2}{5}\)
\(\frac{3}{5}\times\left(3x-3,7\right)=\frac{-53-4}{10}\)
\(\frac{3}{5}\times\left(3x-3,7\right)=-\frac{57}{10}\)
\(3x-3,7=-\frac{57}{10}\div\frac{3}{5}\)
\(3x-3,7=-\frac{57}{10}\times\frac{5}{3}\)
\(3x-\frac{37}{10}=-\frac{19}{2}\)
\(3x=-\frac{19}{2}+\frac{37}{10}\)
\(3x=\frac{-95+37}{10}\)
\(3x=-\frac{58}{10}\)
\(3x=-\frac{29}{5}\)
\(x=-\frac{29}{5}\div3\)
\(x=-\frac{29}{5}\times\frac{1}{3}\)
\(x=-\frac{29}{15}\)
c.
\(\frac{7}{9}\div\left(2+\frac{3}{4}x\right)+\frac{5}{9}=\frac{23}{27}\)
\(\frac{7}{9}\div\left(2+\frac{3}{4}x\right)=\frac{23}{27}-\frac{5}{9}\)
\(\frac{7}{9}\div\left(2+\frac{3}{4}x\right)=\frac{23-15}{27}\)
\(\frac{7}{9}\div\left(2+\frac{3}{4}x\right)=\frac{8}{27}\)
\(2+\frac{3}{4}x=\frac{7}{9}\div\frac{8}{27}\)
\(2+\frac{3}{4}x=\frac{7}{9}\times\frac{27}{8}\)
\(2+\frac{3}{4}x=\frac{21}{8}\)
\(\frac{3}{4}x=\frac{21}{8}-2\)
\(\frac{3}{4}x=\frac{21-16}{8}\)
\(\frac{3}{4}x=\frac{5}{8}\)
\(x=\frac{5}{8}\div\frac{3}{4}\)
\(x=\frac{5}{8}\times\frac{4}{3}\)
\(x=\frac{5}{6}\)
d.
\(-\frac{2}{3}\times x+\frac{1}{5}=\frac{3}{10}\)
\(-\frac{2}{3}\times x=\frac{3}{10}-\frac{1}{5}\)
\(-\frac{2}{3}\times x=\frac{3-2}{10}\)
\(-\frac{2}{3}\times x=\frac{1}{10}\)
\(x=\frac{1}{10}\div\left(-\frac{2}{3}\right)\)
\(x=\frac{1}{10}\times\left(-\frac{3}{2}\right)\)
\(x=-\frac{3}{20}\)
e.
\(\left|x\right|-\frac{3}{4}=\frac{5}{3}\)
\(\left|x\right|=\frac{5}{3}+\frac{3}{4}\)
\(\left|x\right|=\frac{20+9}{12}\)
\(\left|x\right|=\frac{29}{12}\)
\(x=\pm\frac{29}{12}\)
Vậy \(x=\frac{29}{12}\) hoặc \(x=-\frac{29}{12}\)
f.
\(\left|2x-\frac{1}{3}\right|+\frac{5}{6}=1\)
\(\left|2x-\frac{1}{3}\right|=1-\frac{5}{6}\)
\(\left|2x-\frac{1}{3}\right|=\frac{6-5}{6}\)
\(\left|2x-\frac{1}{3}\right|=\frac{1}{6}\)
\(2x-\frac{1}{3}=\pm\frac{1}{6}\)
- \(2x-\frac{1}{3}=\frac{1}{6}\)
\(2x=\frac{1}{6}+\frac{1}{3}\)
\(2x=\frac{1+2}{6}\)
\(2x=\frac{3}{6}\)
\(2x=\frac{1}{2}\)
\(x=\frac{1}{2}\div2\)
\(x=\frac{1}{2}\times\frac{1}{2}\)
\(x=\frac{1}{4}\)
- \(2x-\frac{1}{3}=-\frac{1}{6}\)
\(2x=-\frac{1}{6}+\frac{1}{3}\)
\(2x=\frac{-1+2}{6}\)
\(2x=\frac{1}{6}\)
\(x=\frac{1}{6}\div2\)
\(x=\frac{1}{6}\times\frac{1}{2}\)
\(x=\frac{1}{12}\)
Vậy x = 1/4 hoặc x = 1/12.
Chúc bạn học tốt
Sorry nha, mik chép lộn đềLàm lại câu a nha
a.
\(\frac{2}{3}x-\frac{3}{2}x=\frac{5}{12}\)
\(\left(\frac{2}{3}-\frac{3}{2}\right)\times x=\frac{5}{12}\)
\(\left(\frac{4-9}{6}\right)\times x=\frac{5}{12}\)
\(-\frac{5}{6}\times x=\frac{5}{12}\)
\(x=\frac{5}{12}\div\left(-\frac{5}{6}\right)\)
\(x=\frac{5}{12}\times\left(-\frac{6}{5}\right)\)
\(x=-\frac{1}{2}\)
Chúc bạn học tốt
Dạng 3 :
a) 3x - 10 = 2x + 13
=> 3x - 2x = 13 - 10
=> x = 3
b) x + 12 = -5 - x
=> x + x = -5 - 12
=> 2x = -17
=> x = -8,5
c) x + 5 = 10 - x
=> x + x = 10 - 5
=> 2x = 5
=> x = 2,5
d) 6x + 23 = 2x - 12
=> 2x - 6x = 23 + 12
=> -4x = 35
=> x = -8,75
e) 12 - x = x + 1
=> x + x = 12 - 1
=> 2x = 11
=> x = 5,5
f) 14 + 4x = 3x + 20
=> 4x - 3x = 20 - 14
=> x = 6
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
\(C=5+3\left(2x-1\right)^2\)
\(=5+3\left(3x-1\right)^2\ge5\)
\(Min=5\Leftrightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)