Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)
b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)
\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)
a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2
Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔ x = - 1,5
Vậy Bmin= 4,2 ⇔ x= -1,5
b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)
Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)
Vậy Cmax = \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)
C=|2x-3/5|+4/3>=4/3
Dấu = xảy ra khi x=3/10
D=|x-3|+|-x-2|>=|x-3-x-2|=5
Dấu = xảy ra khi -2<=x<=3
1.
b) \(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\)
Ta có:
\(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\ge\left(\left|x+8\right|+\left|-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left(\left|x+8-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left|-42\right|+\left|x+18\right|\)
\(\Rightarrow B=42+\left|x+18\right|\ge42\)
\(\Rightarrow MIN_B=42\) khi và chỉ khi:
\(\left\{{}\begin{matrix}x+8\ge0\\x+18=0\\x+50\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-18\\x\ge-50\end{matrix}\right.\Rightarrow x=-18.\)
Vậy \(MIN_B=42\) khi \(x=-18.\)
3.
b) \(\left|x-3\right|-\left|2x+1\right|=0\)
\(\Rightarrow\left|x-3\right|=\left|2x+1\right|\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2x=1+3\\x+2x=\left(-1\right)+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=4\\3x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4:\left(-1\right)\\x=2:3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-4;\frac{2}{3}\right\}.\)
Chúc bạn học tốt!
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2