K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

B= 6x+11/x^2-2x+3

= 9(x^2-2x+3)-9x^2+18x-27+6x+11/ x^2-2x+3

= 9 +

-(3x-4)^2/(x-1)^2+2

Vì (3x-4)^2 > hoặc = 0 với mọi x

=> -(3x-4)^2< hoặc =0

(x-1)^2+2>0 với mọi x

=> -(3x-4)^2/(x-1)^2+2< hoặc=0

=> B< hoặc =9

Vậy GTLN của B=9 khi x=4/3

Làm tương tự ta có gtnn của B=-1/2 khi x=-5

Chúc bạn học tốt!

24 tháng 2 2020

ban giai jup mik GTNN vs

14 tháng 7 2019

A = x2 - 8x + 1 = (x2 - 8x + 16) - 15 = (x - 4)2 - 15

Ta có: (x - 4)2 \(\ge\)\(\forall\)x

=> (x - 4)2 - 15 \(\ge\)-15 \(\forall\) x 

Dấu "=" xảy ra khi: x - 4 = 0 <=> x = 4

vậy Min của A = -15 tại x = 4

B = 9x2 - 12x - 2 = 9(x2 - 4/3x + 4/9) - 6 = 9(x - 2/3)2 - 6

Ta có: (x - 2/3)2 \(\ge\)\(\forall\)x ---> 9(x - 2/3)2 \(\ge\)\(\forall\)x

=> 9(x - 2/3)2 - 6 \(\ge\)-6 \(\forall\)x

Dấu "=" xảy ra khi: x - 2/3 = 0 <=> x = 2/3

vậy Min của B = -6 tại x = 2/3

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

21 tháng 11 2022

Bài 1:

a: A=x^2-6x+10

=x^2-6x+9+1

=(x-3)^2+1>=1

Dấu = xảy ra khi x=3

b: \(B=3x^2-12x+1\)

=3(x^2-4x+1/3)

=3(x^2-4x+4-11/3)

=3(x-2)^2-11>=-11

Dấu = xảy ra khi x=2

1:

a: A=x^2+4x+4+13

=(x+2)^2+13>=13

Dấu = xảy ra khi x=-2

b; =x^2-8x+16+84

=(x-4)^2+84>=84

Dấu = xảy ra khi x=4

c: =x^2+x+1/4+19/4

=(x+1/2)^2+19/4>=19/4

Dấu = xảy ra khi x=-1/2

 

8 tháng 9 2019

Tớ làm đc 1b và 2ab thôi hehe

10 tháng 8 2018

a, \(A=x^2-6x+11\)

\(=x^2-2.3.x+9+2\)

\(=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)

Vậy \(MinA=3\Leftrightarrow x=3\)

b, \(B=2x^2+10x-1\)

\(=2\left(x^2+5x\right)-1\)

\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)

Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)

c, \(C=5x-x^2\)

\(=-x^2+5x\)

\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)

\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)

Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)