Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = x2 + 5y2 + 2xy – 4x – 8y + 2015
= (x2 + y2 + 2xy) – 4(x + y) + 4 + 4y2 – 4y + 1 + 2010
= (x + y – 2)2 + (2y – 1)2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\dfrac{3}{2}\); y = \(\dfrac{1}{2}\).
P = x2 + 5y2 + 2xy – 4x – 8y + 2015
= (x2 + y2 + 2xy) – 4(x + y) + 4 + 4y2 – 4y + 1 + 2010
= (x + y – 2)2 + (2y – 1)2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\dfrac{3}{2}\); y = \(\dfrac{1}{2}\)
a)
P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015
= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010
= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)
a) \(x^2+5y^2+2xy-4x-8y+2015\)
\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)
\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy.....
b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
\(a,x^2+5y^2+2xy-4x-8y+2015\)
\(=\left(x^2+y^2+2xy\right)-4\left(x+2y\right)+4+4y^2-4y+1+2015=\left[\left(x+y\right)^2-4\left(x+2y\right)+4\right]+\left(4y^2-4y+1\right)+2015\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\)
Do.....
Nên .....
Vậy MIN = 2010 <=> x = 3/2; y = 1/2
P/S: nhương người đi sau
\(\)
a, đặt ( x2+x)=y ta có :
y2+4y=12 <=> y2+4y-12=0
<=> y2+4y+4-16 =0
<=>(y2+4y+4)-16+=0
<=> (y+2)2-16=0
<=>(y-2)(y+6)=0
<=>y-2=0 hoặc y+6=0
<=> y=2 hoặc y=-6
<=> x2+x=2 hoặc x2+x=-6
<=> x2+x -2=0 hoặc x2+x+6=0(vô lý)
<=> (x-1)(x+2)=0 <=> x-1=0 hoặc x+2=0
<=> x=1 hoặc x=-2
vậy pt có nghiệm là x=1 và x=-2
b,6x4-5x3-38x2-5x+6=0
<=>6x4-18x3+13x3-39x2+x2-3x-2x+6=0
<=>6x3(x-3)+13x2(x-3)+x(x-3)-2(x-3)=0
<=>(x-3)(6x3+13x2+x-2)=0
<=>(x-3)(6x3+12x2+x2+2x-x-2)=0
<=>(x-3)(6x2(x+2)+x(x+2)-(x+2))=0
<=>(x-3)(x+2)(6x2+x-1)=0
<=>(x-3)(x+2)(3x-1)(2x+1)=0
tới đây tự làm
Ta có: \(x^2+5y^2+2xy-4x-8y+2015\)
\(=\left(x^2+2xy+y^2\right)-\left(4x+8y\right)+4+\left(4y^2-4y+1\right)+2010\)
\(=[\left(x+y\right)^2-4\left(x+2y\right)+4]+\left(4y^2-4y+1\right)+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\)
mà \(\left(x+y-2\right)^2,\left(2y-1\right)^2\ge0\)
nên \(x^2+5y^2+2xy-4x-8y+2015\ge2010\)
Vậy MIN= 2010 \(\Leftrightarrow x=\frac{3}{2},y=\frac{1}{2}.\)