K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3

        Giải:

Theo bài ra ta có: \(\left\{{}\begin{matrix}a=12.k\\b=12.d\end{matrix}\right.\) (k; d) = 1; k;d \(\in\) N*

12k.12.d = 180.12

k.d = 180.12 : (12.12) = 15

Ư(15) = {1; 3; 5; 15}

Lập bảng ta có: 

k.d   15 15 15 15
k 1 3 5 15
d 15 5 3 1
(k;d)=1 nhận nhận nhận nhận

Theo bảng trên ta có: (k;d) =(1; 15); (3; 5); (5; 3); (15; 1)

Vậy: (a;b) = (12; 180); (36; 60); (60; 36); (180; 12)

 

 

     

 

27 tháng 3

giúp mình vs ạ mình đg cần gấp

26 tháng 8 2021

đặt a=12x,b=12y(x<y và ucln(x,y)=1 và x,y<1) do bcnn(a,b)=180 nên 180chia hết cho a và b nên 180 chia hết cho 12xy suy ra 15 chia hết cho xy mà x,y>1 và x<y nên x=3,y=5 suy ra a=36,b=60

5 tháng 11 2021
☺😊🥰😇😊😉🙃😂😍🤩😗☺☺😙😙
25 tháng 2 2016

=>a=12m

b=12n (ưcln(m;n)=1;m;n thuộc N

tích ab=180*12=2160

=>12n12m=2160

=>144mn=2160

=>mn=15

mà ƯCLN(m;n)=1

=>(m;n)=(5;3);(3;5)

=>(a;b)=(60;36);(36;60)

26 tháng 11 2021

TL ;

\(a=180;60\)

\(b=12;36\)

HT

3 tháng 8 2021

Ta có (a;b).[a;b] = a.b

\(\Rightarrow ab=12.180=2160\)

Lại có (a;b) = 12 đặt \(\hept{\begin{cases}a=12m\\b=12n\end{cases}}\left(m< n;m;n\inℕ^∗\right)\)

Khi đó ab = 1260 

\(\Leftrightarrow12m.12n=2160\)

\(\Leftrightarrow m.n=15\)

Lập bảng xét các trường hợp 

m515
n31
a60180
b3612(loại)

Vậy a = 60 ; b = 36 

4 tháng 8 2021

24 và 36

15 tháng 10 2023

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

15 tháng 10 2023

 Ko bt

19 tháng 12 2021

a: a=36

b=6

19 tháng 12 2021

bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho

2 tháng 12 2021

TK 

Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b

⇒a.b=336.12=4032⇒a.b=336.12=4032

Vì ƯCLN (a,b) = 12

⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)

Mà : a.b = 4032

⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032

⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28

+)

2 tháng 12 2021

Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b

⇒a.b=336.12=4032⇒a.b=336.12=4032

Vì ƯCLN (a,b) = 12

⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)

Mà : a.b = 4032

⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032

⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28

+) ⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12

+) ⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24

+) ⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48

Vậy a = 336 ; b = 12

a = 168 ; b = 24

a = 84 ; b = 48Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b

⇒a.b=336.12=4032⇒a.b=336.12=4032

Vì ƯCLN (a,b) = 12

⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)

Mà : a.b = 4032

⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032

⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28

+) ⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12

+) ⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24

+) ⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48

Vậy a = 336 ; b = 12

a = 168 ; b = 24

a = 84 ; b = 48

Chúc bạn học tốt nha!