Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x-3=xy+2y => x-3=y.(x+2)
=> y=\(\frac{x-3}{x+2}=\frac{x+2-5}{x+2}=1-\frac{5}{x+2}\)
Để y là số tự nhiên thì 5 chia hết cho x+2
=> x+2 thuộc Ư(5) => x+2 thuộc {1;5}
Lại có để y là số tự nhiên thì 1>=5/(x+2)
=> 5/(x+2)=1=> x+2=5=> x=3
=> y=0
Vậy (x;y)=(3;0)
c. (2xy-6x)+y=13
=> 2x(y-3)+(y-3)=10
=> (y-3)(2x+1)=10=1.10=10.1=2.5=5.2
Mà 2x+1 là số lẻ => 2x+1 thuộc {1;5}
• 2x+1=1 thì y-3=10 => x=0; y=13
• 2x+1=5 thì y-3=2 => x=2; y=5
Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau
\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)
Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)
Không thỏa mãn điều kiện vì 12 không chia hết cho 5
Ta có : \(x=8x',y=8y'\)(như trên)
Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)
Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)
Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)
Vì ƯCLN(x;y) = 5
=> \(\hept{\begin{cases}x=5m\\y=5n\end{cases}\left(m;n\inℕ^∗\right);\left(m,n\right)=1}\)
Khi đó : xy = 825
<=> 5m.5n = 825
=> 25.mn = 825
=> mn = 33
Với m,n là số tự nhiên ta có : 33 = 11.3 = 1.33
Lập bảng xét các trường hợp
m | 1 | 33 | 11 | 3 |
n | 33 | 1 | 3 | 11 |
x | 5 | 165 | 55 | 15 |
y | 165 | 5 | 15 | 55 |
Vậy các cặp (x;y) thỏa mãn là : (5;165) ; (165;5) ; (55;15) ; (15;55)
a, Do UCLN là 5 nên a, b chia hết cho 5 => tận cùng là 0 hoặc 5
Ta có 20 = 15 + 5 = 18 + 2=19+1=17+3=16+4=14+6=13+7=12+8=11+9
=> 2 số a và b là 15 và 5 hoặc 5 và 15
Bài sau làm tương tự em nhé :)
Tìm tập hợp các số nguyên x biết :
| x + 1 | < 2