Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ số của x5 trong khai triển x(1-2x)5 là (-2)4.C54
Hệ số của x5 trong khai triển x2(1+3x)10 là 33.C103
Do đó hệ số của x5 trong khai triển x(1-2x)5+ x2(1+3x)10 là
(-2)4.C54 + 33.C103= 3320
Chọn C
Chọn D
Hệ số của x 5 trong khai triển biểu thức x ( 1 - 2 x ) 5 là hệ số của x 4 trong khai triển biểu thức ( 1 - 2 x ) 5 và bằng .
Hệ số của x 5 trong khai triển biểu thức x 2 ( 1 + 3 x ) 10 là hệ số của x 3 trong khai triển biểu thức ( 1 + 3 x ) 10 và bằng .
Vậy hệ số của x 5 trong khai triển biểu thức x ( 1 - 2 x ) 5 + x 2 ( 1 + 3 x ) 10 bằng 3240 + 80 = 3320.
\(\left(2x-1\right)^6\left(3x^2+1\right)^5=\sum\limits^6_{k=0}C_6^k\left(2x\right)^k\left(-1\right)^{6-k}\sum\limits^5_{i=0}C_5^i\left(3x^2\right)^i\)
\(=\sum\limits^6_{k=0}\sum\limits^5_{i=0}C_6^k.C_5^i.\left(-1\right)^{6-k}.2^k.3^i.x^{k+2i}\)
Số hạng chứa \(x^4\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le k\le6\\0\le i\le5\\k+2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(1;2\right);\left(2;0\right)\)
Hệ số:
\(C_6^4.C_5^0\left(-1\right)^4.2^4.3^0+C_6^2C_5^1\left(-1\right)^2.2^2.3^1+C_6^0.C_5^2.\left(-1\right)^0.2^0.3^2=...\)
Hệ số của \(x^5\) trong khai triển \(P\left(x\right)=x\left(1-2x\right)^5\) chính là hệ số của \(x^4\) trong khai triển \(Q\left(x\right)=\left(1-2x\right)^5=\left(-2x+1\right)^5\)
Số hạng tổng quát trong khai triển \(Q\left(x\right):\) \(C_5^k.\left(-2x\right)^k=C_5^k.\left(-2\right)^k.x^k\)
\(\Rightarrow\) hệ số của số hạng chứa \(x^4\) trong khai triển \(Q\left(x\right)\) là: \(C_5^4.\left(-2\right)^4=80\)
Xét khai triển: \(\left(2x-1\right)^n\) với \(n\ge5\)
SHTQ: \(C_n^k.\left(2x\right)^k.\left(-1\right)^{n-k}=C_n^k.2^k.\left(-1\right)^{n-k}.x^k\)
Số hạng chứa \(x^5\Rightarrow k=5\) có hệ số \(C_n^5.2^5.\left(-1\right)^{n-5}\)
Do đó hệ số của \(x^5\) trong khai triển đã cho là:
\(C_5^5.2^5.\left(-1\right)^0+C_6^5.2^5.\left(-1\right)^1+C_7^5.2^5.\left(-1\right)^2=...\)