K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow x^3-x^2+x-x^3-x^2+m=-2x^2+x+5\)

\(\Leftrightarrow m-2x^2+x=-2x^2+x+5\)

hay m=5

b: \(\Leftrightarrow-x^4-x^3-3x^2=-x^4-x^3-x^2+m\)

\(\Leftrightarrow m=-x^4-x^3-3x^2+x^4+x^3+x^2=-2x^2\)

13 tháng 8 2017

Tách tách tách :v

$(15-2x)(4x+1)-(13-4x)(2x-3)-(x-1)(x+2)+x^2=52$

$=>(60x+15-8x^2-2x)-(26x-39-8x^2+12x)-(x^2+3x+2)+x^2=52$

$=>60x+15-8x^2-2x-26x+39+8x^2-12x-x^2-3x-2+x^2=52$

$=>(8x^2-8x^2+x^2-x^2)+(60x-2x-26x-12x-3x)+(15+39-2)=52$

$=>17x+52=52$

$=>x=0$

A) (15-2x)(4x+1)-(13-4x)(2x-3)-(x-1)(x+2)+x^2=52

..............bn phân rồi gộp lại để ra kq như dòng dưới nha....

=>19x + 56 = 52

=> 19x = -4

=> x = ‐ 4 / 1 9

NHỚ TK MK ĐÓ

13 tháng 8 2017





a, (x-1).(x-2).(x-3)

= (x2 - 2x - x + 2) . (x-3)

= (x- 3x + 2). (x-3)4

= x3 - 3x2 - 3x2 + 9x + 2x -6

= x3 - 6x+ 11x -6

b) (x2 +x+1)(x2-1)(x2-x+1)

= (x4 - x2 + x3 - x+ x2 -1) . (x2 - x +1)

= (x4 + x3 -x -1) . (x2 - x  +1)

= x- x5 + x4 + x- x4 + x3 - x2 + x -1

= x6 + x3 - x+ x - 1

c) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)

= (8x - 6x2 - 20 + 15x) - (15x-6x+55-22x) - 30x + 75

= 8x - 6x2 - 20 + 15x - 15x+6x-55+22x - 30x+75

= 6x-6x2 +55

d)(x2-2x+3)(3x-5)-(x2+x-1)(2x+7)

làm tương tự phần C

lưu ý trước dấu ngoặc là dấu trừ, khi phá ngoặc ra phải đổi dấu



 


 

a: \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

\(=\left(x^2-3x+2\right)\left(x-3\right)\)

\(=x^3-3x^2-3x^2+9x+2x-6\)

\(=x^3-6x^2+11x-6\)

b: \(\left(x^2+x+1\right)\left(x^2-1\right)\left(x^2-x+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\cdot\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6-1\)

c: \(=8x-6x^2-20+15x-\left(15x-6x^2+55-10x\right)-30x+75\)

\(=-6x^2-7x+55+6x^2-5x-55\)

\(=-12x\)

d: \(\left(x^2-2x+3\right)\left(3x-5\right)-\left(x^2+x-1\right)\left(2x+7\right)\)

\(=3x^3-5x^2-6x^2+10x+9x-10-\left(x^2+x-1\right)\left(2x+7\right)\)

\(=3x^3-11x^2+19x-10-\left(2x^3+7x^2+2x^2+7x-2x-7\right)\)

\(=3x^3-11x^2+19x-10-2x^3-9x^2-5x+7\)

\(=x^3-20x^2+14x-3\)

Tìm x

a) Ta có: \(16x^2-\left(4x-5\right)^2=15\)

\(\Leftrightarrow16x^2-\left(16x^2-40x+25\right)-15=0\)

\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)

\(\Leftrightarrow40x-40=0\)

\(\Leftrightarrow40x=40\)

hay x=1

Vậy: x=1

b) Ta có: \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1\right)-49=0\)

\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)

\(\Leftrightarrow12x-36=0\)

\(\Leftrightarrow12x=36\)

hay x=3

Vậy: x=3

d) Ta có: \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)

\(\Leftrightarrow2\left(x^2+2x+1\right)-\left(x^2-9\right)-\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)

\(\Leftrightarrow12x-5=0\)

\(\Leftrightarrow12x=5\)

hay \(x=\frac{5}{12}\)

Vậy: \(x=\frac{5}{12}\)

e) Ta có: \(\left(x-5\right)^2-x\left(x-4\right)=9\)

\(\Leftrightarrow x^2-10x+25-x^2+4x-9=0\)

\(\Leftrightarrow-6x+16=0\)

\(\Leftrightarrow6x=16\)

hay \(x=\frac{8}{3}\)

Vậy: \(x=\frac{8}{3}\)

f) Ta có: \(\left(x-5\right)^2-\left(x-4\right)\left(1-x\right)=0\)

\(\Leftrightarrow x^2-10x+25-\left(x-x^2-4+4x\right)=0\)

\(\Leftrightarrow x^2-10x+25-x+x^2+4-4x=0\)

\(\Leftrightarrow2x^2-15x+29=0\)

\(\Leftrightarrow2\left(x^2-\frac{15}{2}x+\frac{29}{2}\right)=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{15}{4}+\frac{225}{16}+\frac{7}{16}=0\)

\(\Leftrightarrow\left(x-\frac{15}{4}\right)^2+\frac{7}{16}=0\)(vô lý)

Vậy: x∈∅