K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KO
1
9 tháng 10 2021
Để A giao B khác rỗng thì \(\left[{}\begin{matrix}m+1< 2m\\m+3>2m-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-m< -1\\-m>-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>1\\m< 4\end{matrix}\right.\)
Vậy: Có 2 giá trị nguyên thỏa mãn
HN
1
AH
Akai Haruma
Giáo viên
10 tháng 10 2023
Lời giải:
Để $A\cap B=\varnothing$ thì:
\(\left[\begin{matrix} 2m+1<-1\\ 2m-1\geq 5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m<-1\\ m\geq 3\end{matrix}\right.\)
XD
1
NV
Nguyễn Việt Lâm
Giáo viên
15 tháng 9 2021
\(A\cap B\ne\varnothing\Leftrightarrow\left[{}\begin{matrix}m+1< 2m-1< m+3\\m+1< 2m< m+3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2< m< 4\\1< m< 3\end{matrix}\right.\) \(\Rightarrow1< m< 4\)
\(\left(-5;0\right)\cap[2m-1;2m+7)\ne\varnothing\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\2m+7>-5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{2}\\m>-6\end{matrix}\right.\) \(\Rightarrow-6< m< \dfrac{1}{2}\)
Lời giải:
Để $(-5;0)\cap [2m-1; 2m+7)$ rỗng thì:
\(\left[\begin{matrix} 2m+7\leq -5\\ 2m-1\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\leq -6\\ m\geq \frac{1}{2}\end{matrix}\right.\)
Để $(-5;0)\cap [2m-1; 2m+7)$ khác rỗng thì:
\(m\in (-6; \frac{1}{2})\)