Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a.
\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)
Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)
\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)
Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)
\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)
\(\Rightarrow f\left(t\right)\ge-1\)
\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)
Có 30 giá trị nguyên của m
1b.
Với \(x=0\) BPT luôn đúng
Với \(x\ne0\) BPT tương đương:
\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)
\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)
Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)
Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)
\(\Rightarrow f\left(t\right)\ge6\)
\(\Rightarrow m\le6\)
Vậy có 37 giá trị nguyên của m thỏa mãn
Ta có: \(VT_{bpt}=m^2\left(x^4-1\right)+m\left(x^2-1\right)-6\left(x-1\right)\)(*)
\(=\left(x-1\right)\left[m^2\left(x+1\right)\left(x^2+1\right)+m\left(x+1\right)-6\right]\)
Ta xét \(f\left(x\right)=m^2\left(x+1\right)\left(x^2+1\right)+m\left(x+1\right)-6\)
+) m=0, rõ ràng không thỏa mãn
+) \(m\ne0\), thì f(x) là hàm số bậc 3, luôn có ít nhất 1 nghiệm, và luôn có lẻ số nghiệm(nghĩa là chỉ có 1 hoặc 3 nghiệm). Gọi nghiệm đó là \(x_o\) thì
\(f\left(x\right)=\left(x-x_o\right)\left(m^2x^2+bx+c\right)\)
Th1: \(ax^2+bx+c=\left(x-x_1\right)\left(x-x_2\right)\). Lúc này dấu của (*) đổi dấu trên từng khoảng, nên Th này loại.
Th2:\(ax^2+bx+c>0\forall x\) thì ta sẽ xét dấu của \(\left(x-1\right)\left(x-x_o\right)\). Biện luận tương tự Th1, để Bpt đúng với mọi x thì \(x_o=1\). Do đó f(x) phải nhận \(x_o\) làm nghiệm. Thay x=1 vào f(x):
\(m^2.4+2m-6=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-\dfrac{3}{2}\end{matrix}\right.\)
Thử lại thấy cả 2 giá trị của m đều thỏa mãn. Vậy \(S=-\dfrac{3}{2}+1=-\dfrac{1}{2}\)
\(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)
Yêu cầu bài toán thõa mãn khi \(f\left(x\right)=0\) có hai nghiệm thỏa mãn \(x_1\le1< 3\le x_2\)
\(\left\{{}\begin{matrix}\Delta'=m^2-3m+3\ge0\\f\left(1\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\-m+1\le0\\15-5m\le0\end{matrix}\right.\)
\(\Leftrightarrow m\ge3\)
Bpt \(\left(m-1\right)x^2+2\left(m+2\right)x+2m+2\ge\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=\left(m+2\right)^2-\left(m-1\right)\left(2m+2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\-m^2+4m+6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left[{}\begin{matrix}m< 2-\sqrt{10}\\m>\sqrt{2+\sqrt{10}}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< 2-\sqrt{10}}\)
\(f\left(x\right)=\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\)
TH1: \(m=2\)
Bất phương trình tương đương \(-4x+9\le0\Leftrightarrow x\ge\dfrac{9}{4}\)
\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán
TH2: \(m>2\)
\(f\left(x\right)\le0\forall x\in\left(x_1;x_2\right)\)
\(\Rightarrow m>2\) không thỏa mãn yêu cầu bài toán
TH3: \(m< 2\)
+) \(\Delta=-m^2+7m-6\le0\Leftrightarrow\left[{}\begin{matrix}m\le1\\m\ge6\end{matrix}\right.\)
\(f\left(x\right)\le0\forall x\in R\Rightarrow f\left(x\right)\le0\forall x< -4\)
Kết hợp điều kiện \(m< 2\) ta được \(m\le1\) thỏa mãn yêu cầu bài toán
+) \(\Delta=-m^2+7m-6>0\Leftrightarrow1< m< 6\)
Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)\) có hai nghiệm phân biệt thỏa mãn \(x_2>x_1\ge-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right).f\left(-4\right)\ge0\\\dfrac{3m-4}{m-2}>-4\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Vậy \(S=(-\infty;1]\)
Không biết đúng chưa, bài này phức tạp quá.
uầy châu giỏi gớm hè :v