Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(-x^2+2x+\frac{1}{2}-m\ge0\)
\(pt\Leftrightarrow\left[{}\begin{matrix}4x-2m-\frac{1}{2}>-x^2+2x+\frac{1}{2}-m\\4x-2m-\frac{1}{2}< x^2-2x-\frac{1}{2}+m\end{matrix}\right.\)
Xét từng bpt một nhé:
\(x^2+2x-1-m>0\) (1)
Để (1) đúng với mọi x thì \(\Delta< 0\Leftrightarrow1+1+m< 0\Leftrightarrow m< -2\)
\(x^2-6x+3m>0\) (2)
Để (2) đúng với mọi x thì \(\Delta< 0\Leftrightarrow9-3m< 0\Leftrightarrow m>3\)
\(\Rightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)
\(\Rightarrow S=\left(-2019;-2\right)\cup\left(3;2019\right)\)
Tự đếm xem có bao nhiêu phần tử nha cậu :))
2.
b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)
\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)
\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)
\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)
Vậy \(m\in\left(-2;4\right)\)
2.
a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m>5\)
a/ \(\frac{1-cos\left(2x+\frac{\pi}{2}\right)-1}{cosx\left(\frac{1}{sinx}-sinx\right)}=\frac{sin2x}{cosx\left(\frac{1-sin^2x}{sinx}\right)}=\frac{2sinx.cosx.sinx}{cosx.cos^2x}=\frac{2sin^2x}{cos^2x}=2tan^2x\)
b/ \(x^2+2x+2019=\left(x+1\right)^2+2018>0\) \(\forall x\)
\(-1\le\frac{x^2-2x-m}{x^2+2x+2019}\Leftrightarrow x^2-2x-m\ge-x^2-2x-2019\)
\(\Leftrightarrow2x^2\ge m-2019\) \(\forall x\)
\(\Rightarrow m-2019\le0\Rightarrow m\le2019\)
\(\frac{x^2-2x-m}{x^2+2x+2019}< 2\Leftrightarrow x^2-2x-m< 2x^2+4x+4038\)
\(\Leftrightarrow x^2-6x+9>-m-4029\)
\(\Leftrightarrow\left(x-3\right)^2>-m-4029\) \(\forall x\)
\(\Rightarrow-m-4029< 0\Rightarrow m>-4029\)
Vậy \(-4029< m\le2019\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-2m-\dfrac{1}{2}>-x^2+2x+\dfrac{1}{2}-m\\4x-2m-\dfrac{1}{2}< x^2-2x-\dfrac{1}{2}+m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-\dfrac{1}{4}-m>0\\x^2-6x+3m>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1+\dfrac{1}{4}+m< 0\\9-3m< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -\dfrac{5}{4}\\m>3\end{matrix}\right.\)