K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

min-----------nhỏ----

max là giá trị lớn nhất

còn đâu tự làm nha

9 tháng 5 2016
  • Min: A= -1+  (x-2)2/(x2+1) (tách ra)                                                                                                                                              => Amin =-1 <=> x-2=0 <=> x=2                                                                              
  • Max: A= 4 -  (2x+1)2/(x2+1)                                                                                                                                                                                                      => Amax = 4 <=> 2x+1=0 <=> x= -1/2
31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

3 tháng 3 2018

mk lm dk oy

30 tháng 12 2016

\(D=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-3\left(x-1\right)}{\left(x-1\right)^2}\)

Đặt: x-1=y=>x=y+1. Ta có:

\(D=\frac{\left(y+1\right)^2-3y}{y^2}=\frac{y^2-y+1}{y^2}=1-\frac{1}{y}+\frac{1}{y^2}\)

Đặt: \(\frac{1}{y}=t\Rightarrow D=1-t+t^2\ge\frac{3}{4}\\ D=\frac{3}{4}\Leftrightarrow\left(t-\frac{1}{2}\right)^2=0\Rightarrow t=\frac{1}{2}\)

\(t=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{1}{2}\Rightarrow y=2\Leftrightarrow x-1=2\Rightarrow x=3\)

Vậy minD=\(\frac{3}{4}\Leftrightarrow x=3\)

30 tháng 12 2016

D=\(\frac{x.x-3x+3}{x.x-2x+1}\)

D=\(\frac{x.\left(x-3\right)+3}{x.\left(x-2\right)+1}\)

D=\(\frac{x-3+3}{x-2+2}\)(Chia cả tử và mẫu cho x lần)

D=\(\frac{x}{x}\)

D=1

26 tháng 8 2017

GTNN : 

\(K=\frac{3-4x}{x^2+1}=\frac{-x^2-1+x^2-4x+4}{x^2+1}=\frac{\left(x^2+1\right)+\left(x-2\right)^2}{x^2+1}=1+\frac{\left(x-2\right)^2}{x^2+1}\ge1\)

K đạt MIN là 1 khi x = - 2

GTLN :

\(K=\frac{3-4x}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2+4x+1\right)}{x^2+1}=\frac{4\left(x^2+1\right)-\left(2x+1\right)^2}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)

Đạt GTLN là 4 tại x = - 1/2

27 tháng 8 2017

K MIN =1 khi x=2. Hung viết nhầm