Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Bạn làm như thế này là sai rồi nhé bạn dùng HDT số 3 rồi xét các ước của pt=> nghiệm nha
\(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2=\dfrac{1}{2}x^4+x^2y^2+\dfrac{1}{2}y^4-2x^2y^2\\ =\dfrac{1}{2}x^4-x^2y^2+\dfrac{1}{2}y^4=\dfrac{1}{2}\left(x^4-2x^2y^2+y^4\right)\\ =\dfrac{1}{2}\left(x^2-y^2\right)^2\)
\(2\left(x^2+y^2\right)^2-2x^2y^2=2\left(x^4+2x^2y^2+y^4\right)-2x^2y^2\\ =2x^4+4x^2y^2+2y^4-2x^2y^2=2x^4+2x^2y^2+2y^4\\ =2\left(x^4+x^2y^2+y^4\right)\)
\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)
<=> x2 -4+3x2= 4x2+4x+1+2x
<=> 4x^2 - 4= 4x^2 +6x +1
<=> - 4=6x +1
<=> 6x= -5
<=> x= \(-\frac{5}{6}\)
ta có \(\left(x+2\right)^2-2\left(x+2\right)\left(x+3\right)+\left(x+5\right)^2=7\)
\(\Leftrightarrow x^2+4x+4-2\left(x^2+5x+6\right)+x^2+10x+25=7\)
\(\Leftrightarrow4x+10=0\Leftrightarrow x=-\frac{5}{2}\)
Bạn áp dụng hằng đẳng thức số 1, nhân phá ngoặc là Ok nhé
\(\left(x+2\right)^2-2\left(x+2\right)\left(x+3\right)+\left(x+5\right)^2=7\)
\(\Leftrightarrow x^2+4x+4-2\left(x^2+3x+2x+6\right)+x^2+10x+25-7=0\)
\(\Leftrightarrow2x^2+14x+22-2x^2-6x-4x-12=0\)
\(\Leftrightarrow4x+10=0\)
\(\Leftrightarrow4x=-10\)
\(\Leftrightarrow x=\frac{-5}{2}\)
(2x - 1)^2 + (x + 3)^2 - 5(x + 7)(x - 7) = 0
<=>4x^2-4x+1+x^2+6x+9-5x^2+245=0
<=>2x+255=0
<=>2x=-255
<=>x=-255/2
Đặt \(f\left(x\right)=x^3-2x^2-6x+a\)
Gọi thương của \(f\left(x\right):\left(x-2\right)\)là \(P\left(x\right)\)
\(\Rightarrow f\left(x\right)=P\left(x\right).\left(x-2\right)\)
Thay \(x=2\)ta có:
\(8-8-12+a=0\)
\(\Rightarrow a=12\)
Vậy \(a=2\)là giá trị cần tìm
a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)
\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)
\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)
\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)
b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)
c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)
\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)
Câu hỏi của Võ Thiên Hương - Toán lớp 9 - Học trực tuyến OLM
mình trả lời rồi bạn nhé