K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 12 2023

Lời giải:
$A=\frac{\sqrt{x}-1}{\sqrt{x}+4}=\frac{\sqrt{x}+4-5}{\sqrt{x}+4}=1-\frac{5}{\sqrt{x}+4}$

Do $x\geq 4\Rightarrow \sqrt{x}\geq 2\Rightarrow \sqrt{x}+4\geq 6$

$\Rightarrow \frac{5}{\sqrt{x}+4}\leq \frac{5}{6}$

$\Rightarrow A\geq 1-\frac{5}{6}=\frac{1}{6}$

Vậy $A_{\min}=\frac{1}{6}$. Giá trị này đạt tại $x=4$

AH
Akai Haruma
Giáo viên
12 tháng 12 2023

Lời giải:

$A=\frac{\sqrt{x}-1}{\sqrt{x}+4}=1-\frac{5}{\sqrt{x}+4}$

Vì $x\geq 4\Rightarrow \sqrt{x}\geq 2\Rightarrow \sqrt{x}+4\geq 6$

$\Rightarrow \frac{5}{\sqrt{x}+4}\leq \frac{5}{6}$

$\Rightarrow A=1-\frac{5}{\sqrt{x}+4}\geq 1-\frac{5}{6}=\frac{1}{6}$

Vậy $A_{\min}=\frac{1}{6}$. Giá trị này đạt tại $x=4$.

19 tháng 5 2017

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

19 tháng 5 2017

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

ÁP DỤNG BĐT COSI
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\ge3=>x+y\ge2\)

\(P\ge\frac{\left(x+y\right)^2}{x+y}=2\left(cosi\right)\) vậy min P=2 <=> x=y=1

12 tháng 5 2021

                      Bài làm :

Ta có :

\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{y}+\sqrt{x}+1\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT cosi cho các số không âm ; ta được :

\(3\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\)

\(\Rightarrow x+y\ge2\)

Ta có :

\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi x=y=1

Vậy MinP = 2 <=> x=y=1

NV
7 tháng 5 2021

\(4\le\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}+2\right)^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+2\ge4\)

\(\Rightarrow2\le\sqrt{x}+\sqrt{y}\le\sqrt{2\left(x+y\right)}\Rightarrow x+y\ge2\)

\(\Rightarrow P\ge\dfrac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Dấu "=" xảy ra khi \(x=y=1\)

7 tháng 5 2021

Dạ có thể diễn đạt theo cách dễ hiểu cho đứa ngu lâu dốt bền như em được không ạ ? ._.

a: Ta có: \(A=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)

\(=\dfrac{x\sqrt{x}-3-2\left(x-6\sqrt{x}+9\right)-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x\sqrt{x}-x-4\sqrt{x}-6-2x+12\sqrt{x}-18}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x\left(\sqrt{x}-3\right)+8\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+8}{\sqrt{x}+1}\)

 

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9$

a. \(A=\frac{x\sqrt{x}-3}{(\sqrt{x}+1)(\sqrt{x}-3)}-\frac{2(\sqrt{x}-3)^2}{(\sqrt{x}+1)(\sqrt{x}-3)}-\frac{(\sqrt{x}+3)(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-3)}\)

\(=\frac{x\sqrt{x}-3x+8\sqrt{x}-24}{(\sqrt{x}+1)(\sqrt{x}-3)}=\frac{(\sqrt{x}-3)(x+8)}{(\sqrt{x}+1)(\sqrt{x}-3)}=\frac{x+8}{\sqrt{x}+1}\)

b.

\(14-6\sqrt{5}=(3-\sqrt{5})^2\Rightarrow \sqrt{x}=3-\sqrt{5}\)

\(A=\frac{14-6\sqrt{5}+8}{3-\sqrt{5}+1}=\frac{22-6\sqrt{5}}{4-\sqrt{5}}=\frac{58-2\sqrt{5}}{11}\)

c. 

Áp dụng BĐT Cô-si:
$x+4\geq 4\sqrt{x}\Rightarrow x+8\geq 4(\sqrt{x}+1)$

$\Rightarrow A=\frac{x+8}{\sqrt{x}+1}\geq 4$

Vậy $A_{\min}=4$. Giá trị này đạt tại $x=4$

24 tháng 6 2021

a) đk: x\(\ge0\);

P = \(\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right].\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P = \(\dfrac{8}{9}\)

<=> \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

<=> \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{3}\)

<=> \(\dfrac{3\sqrt{x}-2x+2\sqrt{x}-2}{3\left(x-\sqrt{x}+1\right)}=0\)

<=> \(-2x+5\sqrt{x}-2=0\)

<=> \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

<=> \(\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

c)

Đặt \(\sqrt{x}=a\) (\(a\ge0\))

P = \(\dfrac{4a}{3\left(a^2-a+1\right)}\)

Xét P + \(\dfrac{4}{9}\) = \(\dfrac{4a}{3a^2-3a+3}+\dfrac{4}{9}=\dfrac{12a+4a^2-4a+4}{9\left(a^2-a+1\right)}=\dfrac{4a^2+8a+4}{9\left(a^2-a+1\right)}=\dfrac{4\left(a+1\right)^2}{9\left(a^2-a+1\right)}\ge0\)

Dấu "=" <=> a = -1 (loại)

=> Không tìm được Min của P

Xét P - \(\dfrac{4}{3}\) = \(\dfrac{4a}{3\left(a^2-a+1\right)}-\dfrac{4}{3}=\dfrac{4a-4a^2+4a-4}{3\left(a^2-a+1\right)}=\dfrac{-4a^2+8a-4}{3\left(a^2-a+1\right)}=\dfrac{-4\left(a-1\right)^2}{3\left(a^2-a+1\right)}\le0\)

<=> \(P\le\dfrac{4}{3}\)

Dấu "=" <=> a = 1 <=> x = 1 (tm)

24 tháng 6 2021

Ai bảo cậu là không tìm được minP vậy?