Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B\left(x\right)=2x^2-10x+12\)
\(B\left(x\right)=\left(2x^2-4x\right)-\left(6x-12\right)\)
\(B\left(x\right)=2x\left(x-2\right)-6\left(x-2\right)\)
\(B\left(x\right)=\left(2x-6\right)\left(x-2\right)\)
Mà : \(B\left(x\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
Vậy x = 2 ; 3
\(a,2x+5=0\Rightarrow2x=-5\Rightarrow x=-\frac{5}{2}\)
\(b,x^2+5x=0\Rightarrow x\left(x+5\right)=0\)
\(\Rightarrow x=0\)hoặc x+5x=0
=>x=0 hoặc x=\(\frac{+}{-}5\)
\(\left[\frac{x+1}{2}\right]\left(2x-7\right)=0+\Rightarrow\frac{x+1}{2}=0\Leftrightarrow2x-7=0\)
\(\frac{x+1}{2}=0\Rightarrow x+1=0\Rightarrow x=-1\)
\(2x-7=0\Rightarrow2x=7\Rightarrow x=\frac{7}{2}\)
Bài làm:
ADTCDTSBN ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{y-x}{7-3}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}x=9\\y=21\end{cases}}\)
\(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\)
Áp dụng tính chất của DTSBN , ta có :
( bn tự lm )
ta có : \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\left(1\right)\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\left(2\right)\)
từ (1);(2) ta có : \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y+z}{20+24+21}=\frac{69}{65}\)( AD t/c của dãy tỉ số = nhau)
\(\frac{x}{20}=\frac{69}{65}\Rightarrow x=\frac{60}{65}.20=\frac{240}{13}\)
\(\frac{y}{24}=\frac{69}{65}\Rightarrow y=\frac{69}{65}.24=\frac{1656}{65}\)
\(\frac{z}{21}=\frac{69}{65}\Rightarrow z=\frac{69}{65}.21=\frac{1449}{65}\)
vậy (x,y,z)= \(\left(\frac{240}{13},\frac{1656}{65},\frac{1449}{65}\right)\)
x : y : z = 3 : 4 : 5
=>\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Ta có:\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)
ADTCDTSBN:
\(\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{18+32+75}=\dfrac{-4}{5}\)
\(\dfrac{x}{3}=\dfrac{-4}{5}\Rightarrow x=\dfrac{-12}{5}\)
\(\dfrac{y}{4}=\dfrac{-4}{5}\Rightarrow y=\dfrac{-16}{5}\)
\(\dfrac{z}{5}=\dfrac{-4}{5}\Rightarrow z=-4\)
\(x:y:z=3:4:5=>\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(=>x=\dfrac{3y}{4},z=\dfrac{5y}{4}\) thay x,z vào \(2x^2+2y^2-3z^2=-100\)
\(< =>2\left(\dfrac{3y}{4}\right)^2+2y^2-3\left(\dfrac{5y}{4}\right)^2=-100\)
\(=>y=\pm8\)
* với y=8 \(=>x=\dfrac{3.8}{4}=6,z=\dfrac{5.8}{4}=10\)
* với y=-8 \(=>x=-6,z=-10\)
câu 2 Gọi số học sinh nam và nữ lần lượt là a , b (a,b>0)
vì số h/s nam và h/s nữ tỉ lệ với các số 5 và 7 nên: => a/5 = b/7
vì số học sinh nữ nhiều hơn nam là 6 nên: b-a=6
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/5=b/7=b-a/7-5=6/2=3
Do đó : a/5=3=>a=3x5=15(h/s)
b/7=3=>b=3x7=21(h/s)
Vậy số học sinh nam và nữ của lớp đó lần lượt là 15 h/s;21h/s
Ta có: \(\left(2x-4\right)^6\ge0lđ\forall x.\)
\(\left(y-7\right)^{12}\ge0lđ\forall x\)
=> Q\(\ge-21\)
Vậy min Q=\(-21\Leftrightarrow x=2,y=7\)
Học tốt