Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(6x^2\ge0\)
\(2x< 6x^2\)
\(\Rightarrow6x^2+2x\ge0\)
\(\Rightarrow6x^2+2x+2017\ge2017\)
Vậy không tồn tại x khi đa thức trên bằng 0
\(\left|3x-4\right|-\left|y+3\right|=0\)
\(\Rightarrow\left|3x-4\right|+\left|3-y\right|=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=3\end{cases}}}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-x=3\sqrt{3}\\\dfrac{2}{3}-x=-3\sqrt{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2-9\sqrt{3}}{3}\\x=\dfrac{2+9\sqrt{3}}{3}\end{matrix}\right.\)
(x^2+1)(x-1)(x+3)>0
Vì x^2+1>0 với mọi x
nên: (x-1)(x+3)>0
Trường hợp 1:
x-1<0, x+3 <0
Vì x+3 > x-1 nên x+3<0 suy ra x<-3
Trường hợp 2:
x-1>0, x+3>0
Vì x-1<x+3 nên x-1 >0 suy ra x>1
Vậy x<-3 hoặc x>1
Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương
TH1: Có 2 số âm, 1 số dương
Trước hết ta có \(x+3>x-1\)
\(x^2+1>x-1\)
Vì vậy \(x-1< 0\)
\(x^2+1>0\) nên \(x+3< 0\)
\(\Rightarrow x< -3\left(< 1\right)\)
TH2: Cả 3 số đều dương
Xét số bé nhất lớn hơn 0:
\(x-1>0\Rightarrow x>1\)
Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)
1/4×2/6×3/8×4/10×...×14/30×15/32=1/2^x
<=>1/(2×2)×2/(2×3)×...×14/(2×15)×15/2^5=1/2^x
<=>1/2×1/2×...×1/2×1/(2^5)=1/2^x
<=>1/2^19=1/2^x=>x=19
Đề mình không ghi lại nhé.
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{4\times6\times10\times...\times30\times32}=\frac{1}{2^x}\)\(\frac{1}{2^x}\)
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{2\times4\times6\times8\times10\times...\times30\times32}\)\(=\frac{1}{2^{x+1}}\)
\(\Rightarrow\frac{1}{2^{15}\times32}=\)\(\frac{1}{2^{x+1}}\)
\(\Rightarrow2^{15}\times2^5=2^{x+1}\)
\(\Rightarrow2^{20}=2^{x+1}\)
\(\Rightarrow x+1=20\Rightarrow x=19\)
Vậy \(x=1\)
Học tốt nhaaa!
\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^x-\left(x-3\right)^{10}\right]=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-3=0\\\left(x-3\right)^x-\left(x-3\right)^{10}=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\\left(x-3\right)^x=\left(x-3\right)^{10}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=10\end{array}\right.\)
Vậy \(x\in\left\{3;10\right\}\)
\(\Rightarrow\left(x-3\right)\left[\left(x-3\right)^x-\left(x-3\right)^9\right]=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-3=0\\\left(x-3\right)^x-\left(x-3\right)^9=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\\left(x-3\right)^x=\left(x-3\right)^9\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=9\end{array}\right.\)
Vậy \(x\in\left\{3;9\right\}\)
`B=x^2-9=0`
`-> x^2=0+9`
`-> x^2=9`
`-> x^2=(+-3)^2`
`-> x=+-3`
Vậy, đa thức `B` có `2` nghiệm là `x={3 ; -3}`.
3n + 3 + 3n + 1 + 2n + 3 + 2n + 2
= 3n.33 + 3n.3 + 2n.23 + 2n.22
= 3n.(27 + 3) + 2n.(8 + 4)
= 3n.30 + 2n.12
= 3n.5.6 + 2n.2.6
= 6.(3n.5 + 2n.2) \(⋮\) 6
B = |x - 1| + |x - 2| = |x-1| + |2-x| >= |x-1 +2-x| = 1
\(A=|x+1|+|x+2|=|-x-1|+|x+2|\)
\(\Rightarrow A\ge|-x-1+x+2|\)
\(\Rightarrow A\ge1\)
\(A=1\Leftrightarrow\hept{\begin{cases}-x-1\ge0\\x+2\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge-2\end{cases}}\)\(\Leftrightarrow-2\le x\le-1\)
Vậy \(minA=1\Leftrightarrow-2\le x\le-1.\)
Chắc chăn đúng nha bạn
~ học tốt nha ~