Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Nếu \(x< 1\)
=> 1 - x + 3 - x = 2
<=> 4 - 2x = 2
<=> x = 1 (không TM)
* Nếu \(1\le x< 3\)
=> x - 1 + 3 - x = 2
<=> 2 = 2 (đúng)
=> phương trình luôn có nghiệm.
* Nếu \(x\ge3\)
=> x - 1 + x - 3 = 2
<=> 2x - 4 = 2
<=> x = 3 (TM)
Vậy với \(1\le x< 3\)thì phương trình luôn có nghiệm
với \(x\ge3\)thì phương trình có nghiệm x = 3.
Ta có \(|x-1|+|x-3|=2\)\(\Rightarrow|x-1|+|3-x|=2\)
Áp dụng bất đẳng thức \(|a|+|b|\ge|a+b|\)
Dấu bằng xảy ra khi và chỉ khi \(ab\ge0\)
Do đó \(|x-1|+|3-x|\ge|x-1+3-x|=|2|=2\)
Dấu bằng xảy ra khi và chỉ khi \(\left(x-1\right)\left(3-x\right)\ge0\)
\(\cdot\orbr{\begin{cases}\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\\\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\)
\(\cdot\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\Rightarrow1\le x\le3\)
\(\cdot\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\)( vô lý )
Vậy \(1\le x\le3\)
PS : vì đề bài không yêu cầu tìm \(x\in Z\) nên mình để đáp số như vậy
còn nếu yêu cầu bạn phải tìm được 3 giá trị của x là 1;2;3
Ta có:P=(/x-3/+2)^2+(y+3)+2017
Ta thấy:/x-3/\(\ge\)0
\(\Rightarrow\)/x-3/+2\(\ge\)2
\(\Rightarrow\)(/x-3 +2)\(^2\)\(\ge\)4
y\(\ge\)0
\(\Rightarrow\)y+3\(\ge\)3
Do đó (/x-3/+2)\(^2\)\(\ge\)4+3+2017
=2024
Vậy giá trị nhỏ nhất của P là 2024\(\Leftrightarrow\)+, /x-3/=0
\(\Rightarrow\)x-3=0
x =0+3
x =3
+, y+3=0
y =0-3
y =-3
Bài 1:
a: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{1}{2}\\x-\dfrac{1}{3}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)
Ta có : \(B=\left|2-4x\right|-2,5\)
\(\Rightarrow B\)nhỏ nhất \(\Leftrightarrow\left|2-4x\right|\)nhỏ nhất
\(\Leftrightarrow\left|2-4x\right|=0\) ( vì \(\left|2-4x\right|\ge0\)với mọi x)
\(\Leftrightarrow2-4x=0\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=0,5\)
Khi đó : \(B=\left|2-4.0,5\right|-2,5=-2,5\)
Vậy \(B_{min}=-2,5\) tại \(x=0,5\)