Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
\(\left\{{}\begin{matrix}1+a+b+c=0\\8+4a+2b+c=0\\a+b=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=-8\\a+b=-16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{9}{2}\\b=-\dfrac{41}{2}\\c=15\end{matrix}\right.\)
Do đa thức có nghiệm nên ta gọi k là một ngiệm của đa thức đó
Do P(x) là đa thức bậc ba nên \(P\left(x\right)=\left(x-k\right)\left(x^2+mx+n\right)\)
\(=x^3+mx^2+xn-kx^2-kmx-kn\)
\(=x^3+\left(m-k\right)x^2+\left(n-km\right)x-kn\)
Đồng nhất hệ số, ta được: \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)
Thay \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)vào hệ thức \(a+2b+4c=-\frac{1}{2}\),ta được:
\(\left(m-k\right)+2\left(n-km\right)-4kn=-\frac{1}{2}\)
\(\Leftrightarrow m-k+2n-2km-4kn=-\frac{1}{2}\)
\(\Leftrightarrow k\left(-1-2m-4n\right)+\left(m+2n\right)=-\frac{1}{2}\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)+2\left(m+2n\right)=-1\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)=\left(-1-2m-4n\right)\)
\(\Rightarrow2k=1\Rightarrow k=\frac{1}{2}\)
Vậy 1 nghiệm của đa thức là \(\frac{1}{2}\)