Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi só chính phương đó là ab :
ab = 784
nhấn vào đúng chi tiết sẽ hiện ra bạn nhớ nhắn mik nhé !!!
Gọi chữ số nhỏ nhất là x
=> Ba chữ số theo tỉ lệ là: x, 2x, 3x với 3x ≤ 9
=> x ≤ 3 (1)
Vì số cần tìm chia hết cho 18, nghĩa là chia hết cho 9
Nên (x + 2x + 3x) = 6x chia hết cho 9
=> x chia hết cho 3 (2)
Từ (1) & (2), suy ra: x = 3
=> Ba chữ số là 3, 6, 9
Theo đề bài số cần tìm chia hết cho 18 (18 là số chẵn), nghĩa là chia hết cho 2, vậy chữ số cuối phải là 6
=> Số cần tìm là 396 hoặc 936
Gọi chữ số nhỏ nhất là a => số có 3 chữ số là a, 2a, 3a với 3a ≤ 9 => a ≤ 3. Do số cần tìm chia hết cho 18, tức chia hết cho 9 nên (a + 2a + 3a) = 6a chia hết cho 9 => a chia hết cho 3, vậy a = 3 => 3 chữ số là 3, 6, 9
Số cần tìm là số chẵn do chia hết cho 2 vậy chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
Số đó chia hết cho 18 => chia hết cho 2 và 9
=> số đó có tận cùng là chữ số chẵn và có tổng các chữ số chia hết cho 9
Chữ số tận cùng chẵn nên chỉ có thể lớn nhất bằng 8; mỗi chữ số còn lại lớn nhất = 9
=> Tổng các 3 chữ số lớn nhất = 9+ 9 + 8 = 26
Tổng các chữ số chia hết cho 9 => chỉ có thể = 9 hoặc 18
Gọi 3 chữ số đó là a; b ; c và \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
+) Nếu a+ b + c = 9.
ta có: \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{9}{6}=\frac{3}{2}\)=> a = 3/2 loại
+) Vậy a + b + c = 18
=> \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{18}{6}=3\)
=> a = 3.1 =3
b = 2.3 =6; c = 3.3 = 9
Vì chữ số tận cùng chẵn nên số cần tìm là 396 hoặc 936
số chia hết cho 18 là số chia hết cho cả 9 và 2, mà 1-2-3 mới chỉ chia hết cho 3, suy ra 3-6-9, 6-12-18, thì mới chia hết cho 9
mặt khác đây là tỉ lệ của các chữ số, nên các chữ số đó là 3,6,9
lại thấy số này chia hết cho 2 nên các số tìm được là 936 và 396
suy ra số cần tìm là 936
Gọi số phải tìm là: abc.
Ta có: \(1\le a\le9\)
\(0\le b\); \(c\le9\)
Theo giả thiết, ta lại có:
\(\overline{abc}=k^2\); \(k\in N\)
\(\overline{abc}=56l;l\in N\)
\(\Rightarrow k^2=56l=4.14l\)
\(\Rightarrow l=14q^2,q\in N\)
Và:
\(100\le561\le999\)\(\Rightarrow2\le1\le17\)
Từ đó: ta có: q=1;l=14
Vậy số chính phương cần tìm là \(784\)
784 nha bạn ( căn của 784 = 28 và chia cho 56 = 14)