Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abc (đk : \(0< a;c< 10;0\le a\le9\left(a;b;c\inℕ\right)\)
Ta có a < c ; a + c = b
Lại có cba - abc = 792
=> 100c + 10b + a - (100a + 10b + c) = 792
=> 99c - 99a = 792
=> 99(c - a) = 792 (2)
=> c - a = 8
=> c = 8 + a
Vì a khác 0
Khi a = 1 => c = 8 + 1 = 9 (tm)
Khi a > 1 => c > 8 + 1 = 9 (loại) (Vì c < 10)
Thay a = 1 ; c = 9 vào 99(c - a)
=> 99(a - c) = 99 x 8 = 792 = (2)
=> b = 0
=> abc = 901
Gọi số đó là ab (a khác 0)
Có ab+720 =a0b
ax10+b+720=ax100+b
ax90=720
a=8 và bE {0;1;2;3;4;5;6;7;8;9}
gọi số đó là ab
có ab + 720 = a0b
a x 10 + b + 720 = a x 100 +b
a x 90 = 720
a= 8 và be ( 0; 1 ;2; 3; 4;5;6;7;8;9;)
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
Gọi số phải tìm là \(\overline{abc}\)
+) \(0< a< c\le9\); \(0\le b\le9\) (1)
+) Đổi vị trí a và c ta có số mới là: \(\overline{cba}\)
Theo bài ra: \(\overline{cba}-\overline{abc}=792\)\
<=> \(c.100+b.10+a-a.100-b.10-c=792\)
<=> \(99c-99a=792\)
<=> \(c-a=8\)=> \(c\ge8\)(2)
Từ đk (1); (2) :
Với c=8 => a=0 (loại)
Với c= 9 => a=1
+) Ta có: a+b =5 => 1+b=5 => b=4
Vậy số cần tìm là 149
Bài 1:
Gọi số cần tìm là ab1 trong đó a,b là các chữ số, a \(\ne\)0.
Theo đề bài ta có:
ab1 - 1ab= 36
(ab x 10 + 1) - (100 + ab) = 36
ab x 9 - 99 = 36
ab x 9 = 36 + 99 = 135
ab = 135 : 9 = 15
Vậy số cần tìm là 151.
Đáp số: 151
Bài 2: (sorry, mình ko hiểu đề lắm)
Bài 3:
5ab + 3cd = 836
500 + ab + 300 + cd = 836
\(\Rightarrow\)ab + cd = 836 - (500 + 300) = 36
Ta có sơ đồ:
ab /................................./................................./ 36
cd /................................./
cd = 36 : (1 + 2) = 12
ab = 12 x 2 = 24
Vậy 2 số cần tìm là 524 và 312.