Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a
Ta có
a chia hết cho 8;10;18
=>a là bội của 8;10;18
=>a={360;720;1080;;1440;1800;2160;....}
Mà a vào khoảng từ1000 đến 2000
=>a={1080;1440;1800}
Vậy a={1080;1440;1800}
Lời giải:
Gọi số cần tìm là $a$. Theo đề thì:
$a-3\vdots 70,210,350$
$\Rightarrow a-3\vdots BCNN(70,210,350)$
$\Rightarrow a-3\vdots 1050$
$\Rightarrow a=1050k+3$ với $k$ là số tự nhiên
Vì $a$ có 4 chữ số nên $1050k+3>999$
$\Rightarrow k>0$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. $\Rightarrow k=1$
Khi đó: $a=1050.1+3=1053$
Gọi số tự nhiên cần tìm có dạng abcd ( \(0< a\le9\) , \(0\le b,c,d\le9\) )
Do số cần tìm khi chia cho 70 , 210 , 350 có cùng số dư là 3 nên
=> ( abcd - 3 ) \(⋮\) 70 , 210 , 350
=> ( abcd -3 ) \(⋮\) ƯCLN( 70 ; 210 ; 350)
70 = 2 . 5 . 7
210 = 2 . 3 . 5 . 7
350 = 2 . \(5^2\) . 7
=> ƯCLN ( 70;210;350) = 2 . 3 . \(5^2\) . 7 = 1050
=> abcd -3 chia hết 1050
mà abcd là số nhỏ nhất có 4 chữ số
=> abcd -3 = 1050
=> abcd = 1053
vậy số cần tìm là 1053
Gọi số cần tìm là a.Theo đề, ta có:
a:8 dư 5, a:10 dư 7 \(\Rightarrow\) a+3 \(⋮\) cho 5,7( a nhỏ nhất)
\(\Rightarrow\) a+3\(\in\)ƯCLN (5,7) \(\Rightarrow\) a+3=35 \(\Rightarrow\) a=32
Số tự nhiên có hai chữ số chia cho 9 dư 1 là: 10; 19; 28; 37; 46; 55; 64; 73; 82; 91.
Số tự nhiên có hai chữ số chia cho 10 dư 3 là: 13; 23; 33; 43; 53; 63; 73; 83; 93.
Như vậy chỉ có duy nhất số 73 chia cho 9 dư 1 và chia 10 dư 3. Ta thấy 73 chia 13 dư 8.
Vậy A chia cho 13 có số dư là 8.
Gọi số đó là x
Ta có: x chia 12, 18, 21 đều dư 5
=> x+ 5 chia hết cho 12, 18, 21
BCNN( 12, 18, 21)=36
=> x+5 thuộc B(36)={0, 36, 72,........972,1008}
=> x thuộc{31, 67, ....., 967, 1003}
Mà x< 1000
Vậy số đó là 967