K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

25 tháng 2 2022

Giúp mình với các bạn

30 tháng 6 2023

a, Ư(7) = { -7; -1; 1; 7}

Lập bảng ta có:

a +2 -7 -1 1 7
 -9 -3 -1 5

Theo bảng trên ta có:

\(a\) \(\in\) { -9; -3; -1; 5}

b, 2a + 1 \(\in\) Ư(12)

    Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

lập bảng ta có:

2a+1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12

a

 

-11/2

loại

-7/2

loại

-5/2

loại

-2

nhận

-3/2

loại

-1

nhận

0

nhận

1/2

loại

1

nhận

3/2

loại

5/2

loại

11/2

loại

 

Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:

\(\in\) {- 2; - 1; 0; 1}

 

30 tháng 6 2023

n + 5 \(⋮\) n - 2

n - 2 + 7 ⋮ n - 2

            7 ⋮ n -2

Ư(7) ={ -7; -1; 1; 7}

Lập bảng ta có:

n - 2 -7 -1 1 7
n -5 1 3 9

Theo bảng trên ta có:

\(\in\) { -5; 1; 3; 9}

 

 

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:

Gọi $d=ƯCLN(n+1, 4n^2-2n-5)$

$\Rightarrow n+1\vdots d; 4n^2-2n-5\vdots d$

$\Rightarrow 4(n+1)^2-(4n^2-2n-5)\vdots d$
$\Rightarrow 10n+9\vdots d$

$\Rightarrow 10(n+1)-1\vdots d$

Mà $n+1\vdots d$ nên $1\vdots d\Rightarrow d=1$

Vậy $n+1, 4n^2-2n-5$ nguyên tố cùng nhau. Để $(n+1)(4n^2-2n-5)$ là scp thì bản thân mỗi số $n+1, 4n^2-2n-5$ là scp.

Đặt $n+1=a^2; 4n^2-2n-5=b^2$

$\Rightarrow 4(a^2-1)^2-2(a^2-1)-5=b^2$

$\Leftrightarrow 4a^4-8a^2+4-2a^2+2-5=b^2$

$\Leftrightarrow 4a^4-10a^2+1=b^2$

$\Leftrightarrow 16a^4-40a^2+4=4b^2$
$\Leftrightarrow (4a^2-5)^2-21=4b^2$

$\Leftrightarrow 21=(4a^2-5)^2-(2b)^2=(4a^2-5-2b)(4a^2-5+2b)$

Đến đây là dạng phương trình tích cơ bản, chỉ cần xét các TH để tìm ra $a,b$

9: \(\Leftrightarrow n^2+n+3n+2+1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

10: \(\Leftrightarrow n^2+4n+4-2⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{-1;-3;0;-4\right\}\)

11: \(\Leftrightarrow n^2-2n+1+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{2;0;3;-1\right\}\)

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước

2 tháng 8 2015

(3n-5) chia hết cho (n-1)=> \(\frac{3n-5}{n-1}\)thuộc Z 

Ta có : \(\frac{3n-5}{n-1}=\frac{3n-3-2}{n-1}=\frac{3\left(n-1\right)-2}{n-1}=3-\frac{2}{n-1}\) 

=> để \(\frac{3n-5}{n-1}\)thuộc Z =>\(\frac{2}{n-1}\)thuộc Z 

=> n-1 thuộc Ư(2)

Ư(2)={-2;-1;1;2}

Ta có bảng sau:

n-1-2-112
n-1023

                             Vậy n thuộc{ -1;0;2;3}

 

 

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

Trước tiên ta sẽ chứng minh một bổ đề: Số chính phương lẻ chia $8$ dư $1$

--------------------

CM: Gọi số chính phương lẻ là $n^2$. Vì $n^2$ lẻ nên $n$ lẻ. Do đó $n$ có dạng $4k\pm 1$

$\Rightarrow n^2=(4k\pm 1)^2=16k^2\pm 8k+1$ chia $8$ dư $1$ (đpcm)

----------------------

Quay trở lại bài toán:
Đặt $a+1=m^2; 2a+1=n^2$ (trong đó $m,n$ là các số tự nhiên)

$\Rightarrow 2m^2=n^2+1$

$\Rightarrow n^2+1\vdots 2\Rightarrow n$ lẻ

$\Rightarrow n^2$ chia $8$ dư $1$

$\Rightarrow 2m^2=n^2+1$ chia $8$ dư $2$

$\Rightarrow m^2$ lẻ

$\Rightarrow a+1=m^2$ chia $8$ dư $1$

$\Rightarrow a\vdots 8(*)$

Mặt khác:

Một số chính phương lẻ khi chia $3$ có dư là $0$ hoặc $1$

Nếu $m^2$ chia hết cho $3$ thì $a+1\vdots 3\Rightarrow a$ chia $3$ dư $2$

$\Rightarrow n^2=2a+1$ chia $3$ dư $2$ (vô lý)

Do đó $m^2=a+1$ chia $3$ dư $1$

$\Rightarrow a\vdots 3(**)$

Từ $(*); (**)$ mà $(3,8)=1$ nên $a\vdots 24$

AH
Akai Haruma
Giáo viên
23 tháng 3 2020

Số $n$ ở đâu ra vậy bạn?