Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 6n + 7 ⋮ 2n - 1 ⇒ 2n + 2n + 2n - 1 - 1 - 1 + 10 ⋮ 2n 1
⇒ ( 2n - 1 ) + ( 2n - 1 ) + ( 2n - 1 ) + 10 ⋮ 2n - 1
Vì 2n - 1 ⋮ 2n - 1 . Để ( 2n - 1 ) + ( 2n - 1 ) + ( 2n - 1 ) + 10 ⋮ 2n - 1 ⇒ 10 ⋮ 2n - 1
⇒ 2n - 1 ∈ Ư ( 10 )
⇒ Ư ( 10 ) = { + 1 ; + 2 ; + 5 ; + 10 }
⇒ 2n - 1 = + 1 ; + 2 ; + 5 ; + 10
⇒ 2n = 2 ; 0 ; 3 ; - 1 ; 6 ; - 4 ; 11 ; - 9
⇒ n = 1 ; 0 ; 3 ; - 2
Vậy n = { - 2 ; 0 ; 1 ; 3 }
n+ 9 \(⋮n-2\)
mà n - 2 \(⋮n-2\)
= n -2 +11 \(⋮n-2\)
=> 11 \(⋮n-2\)
n -2 \(\inư\left(11\right)\in1,11\)
Ta có bảng:
n-2 | 1 | 11 |
n | 3 | 13 |
Vậy x = 3; 13
=>(n2+3n)+(3n+9)+2 chia hết cho n+3
=>n(n+3)+3(n+3)+2 chia hết cho n+3
=>(n+3)(n+3)+2 chia hết cho n+3
Mà (n+3)(n+3) chia hết cho n+3
=>2 chia hết cho n+3
=> n+3 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {-2;-1;-4;-5}
Để A nguyên
=>n2-3n+1 chia hết cho n+1
=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1
=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1
Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 thuộc Ư(1)={1;-1}
=>n thuộc {0;-2}
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
a) \(3n+19⋮n+1\)
\(\Rightarrow\)\(3\left(n+1\right)+16⋮n+1\)
mà \(3\left(n+1\right)⋮n+1\)\(\Rightarrow\)\(16⋮n+1\)
\(\Rightarrow\)\(n+1\in\left\{1,-1,2,-2,4,-4,8,-8,16,-16\right\}\)
\(\Rightarrow n\in\left\{0,-2,1,-3,3,-5,7,-9,15,-17\right\}\)
b) \(2n+7⋮n+2\)
\(\Rightarrow2\left(n+2\right)+3⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\Rightarrow3⋮n+2\)
\(\Rightarrow n+2\in\left\{1,3,-1,-3\right\}\)
\(\Rightarrow n\in\left\{-1,1,-3,-5\right\}\)
c)\(6n+39⋮2n+1\Rightarrow3\left(2n+1\right)+36⋮2n+1\)
mà\(3\left(2n+1\right)⋮2n+1\)\(\Rightarrow36⋮2n+1\)
\(\Rightarrow2n+1\in\left\{1,-1,2,-2,3,-3,4,-4,6,-6,9,-9,12,-12,18,-18,36,-36\right\}\)
\(\Rightarrow2n\in\left\{0,-2,1,-3,2,-4,3,-5,5,-7,8,-10,11,-13,17,-19,35,-37\right\}\)
\(\Rightarrow\)\(n\in\left\{0,-1,1,-2,4,-5\right\}\)
De 6n+7 chia het cho 2n-1
thi 6n+7 chia het cho 2n-1 va 2n-1 chia het cho 2n-1
=> 6n+7 chia het cho 2n-1 va 3.(2n-1) chia het cho 2n-1
=> 6n+7 chia het cho 2n-1 va 6n-3 chia het cho 2n-1
=> (6n+7)-(6n-3) chia het cho 2n-1
=> 6n+7-6n+3 chia het cho 2n-1
=> 10 chia het cho 2n-1
=> 2n-1 thuoc U(10)={1, -1, 2, -2, 5, -5, 10, -10}
phan con lai ban tu lam tiep nhe